335 resultados para POLYMER FOAMS
Resumo:
The effects of plasticizer ethylene carbonate (EC) on the AC impedance spectra and the ionic conductivity are reported. With increasing of EC concentration the semicircle in high frequency disappears, and the slope of the straight line in low frequency decreases. The data obtained from impedance experiments can be explained using an equivalent circuit proposed. On the other hand, the room temperature conductivity increases with EC concentration because of the increase of the segmental flexibility of PEO. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range follows Arrhenius type, but when EC concentration is larger than 20%, the temperature dependence of conductivity obeys the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.
Resumo:
The ac impedance plots of ( PEO)(16) LiClO4-EC composite polymer electrolytes were studied. The equivalent circuit of stainless steel electrode(SS)/composite electrolyte/SS system was applied to explain the ac impedance plots, The results showed that the equivalent circuit could fit the experimental data very well. The ionic conductivity was calculated using the bulk resistance that was obtained from equivalent circuit. The effect of EC on the conductive behavior was explained by the interactions among different species formed in the composite polymer electrolytes. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range followed Arrhenius type, but when EC concentration was larger than 20%, the temperature dependence of conductivity obeyed the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.
Resumo:
In this article, we report on an approach of using an emulsion polymerized polymer in preparing organic-inorganic nanocomposites through a sol-gel technique. By mixing a polymer emulsion with prehydrolyzed tetraethoxysilane transparent poly(butyl methacrylate)/SiO2, nanocomposites were prepared as shown by TEM. AFM, FTIR, and XPS results show that there is a strong interaction between polymer latex particles and the SiO2 network. Comparison of the emulsion method with a traditional solution method shows that nanocomposites can be prepared by both methods, but there is some difference in their morphology and properties.
Resumo:
Heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of the ferrocene and its derivatives. in a new synthetic comb polymer solvent, poly(dimethylsiloxane-g-monomethylether polyethylene glycol) (SCP), and several other polymer solvents were estimated by using microelectrodes. Also, the influence of various supporting electrolytes on k(s) and D of ferrocene was studied. It was shown that k(s) and D of ferrocene decreased with increasing anionic size of the supporting electrolyte, but k(s) tended to increase with increasing radius of the solvated cation. Also, the cationic size of the supporting electrolytes had little effects on D. The values of k(s) and D for the ferrocene derivatives in the polymer solvents were in sharp contrast to those in monomeric solvents. Thus. the k(s) values were proportional to D in the polymer solvents. which indicates that solvent dynamics control of the electrode reaction. The values of k(s) and D of ferrocene in SCP were larger than those in other polymer solvents indicating that SCP is a good polymer solvent. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Pyrolysis of hyperbranched poly[1,1'-ferrocenylene(methyl)silyne] (5) yields mesoporous, conductive, and magnetic ceramics (6). Sintering at high temperatures (1000-1200 degrees C) under nitrogen and argon converts 5 to 6N and 6A, respectively, in similar to 48-62% yields. The ceramization yields of 5 are higher than that (similar to 36%) of its linear counterpart poly[1,1'-ferrocenylene(dimethyl)silylene] (1), revealing that the hyperbranched polymer is superior to the linear one as a ceramic precursor. The ceramic products 6 are characterized by SEM, XPS, EDX, XRD, and SQUID. It is found that the ceramics are electrically conductive and possess a mesoporous architecture constructed of tortuously interconnected nanoclusters. The iron contents of 6 estimated by EDX are 36-43%, much higher than that (11%) of the ceramic 2 prepared from the linear precursor 1. The nanocrystals in 6N are mainly alpha-Fe2O3 whereas those in 6A are mainly Fe3Si. When magnetized by an external field at room temperature, 6A exhibits a high-saturation magnetization (M-s similar to 49 emu/g) and near-zero remanence and coercivity; that is, 6A is an excellent soft ferromagnetic material with an extremely low hysteresis loss.
Resumo:
Stable monolayer of polyaniline doped with camphor sulfonic acid at the air-water interface has been obtained and has been successfully deposited by Langmuir-Blodgett technique onto CaF2 substrate. IR and UV-Vis-NIR spectra show that the doped molecules dedoped partially from the PANI backbone during the monolayer compression or deposition. Gas-sensing measurement indicates that the doped polyaniline LB film was sensitive to ethanol vapor at room temperature.
Resumo:
A novel 4-aminobenzoic acid (4-ABA) monolayer film is formed on glassy carbon electrode (GCE) by amino cation radical method. Silicotungstic heteropolyanion (SiW12O404-, denoted as SiW12)-containing multilayer films have been fabricated on the 4-ABA modified GCE surface by alternate deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/+) (denoted as QPVP-Os). Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS) and X-ray reflectivity (XR) have been used to characterise the as-prepared multilayer films. It is proved that the multilayer films are uniform and stable. The average thickness for a bilayer of QPVP-Os/SiW12 in the multilayer film is 30.2 Angstrom. The electrocatalytic activities of the multilayer films have been investigated on the reduction of three substrates of important analytical interests, HNO2, BrO3- and H2O2. Especially, the influence of layer number of the multilayer films on the electrocatalytic reduction of HNO2 has been investigated in detail. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Nonisothermal and isothermal melt crystallization kinetics of a novel aryl ether ketone polymer containing meta-phenylene linkages, PEKEKK (T/I), were studied by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny and a new approach by combining the Avrami equation with the Ozawa equation could describe the nonisothermal crystallization. Isothermal crystallization could also be described by the Avrami equation. The activation energies were 187 and 159 kJ/mol for nonisothermal and isothermal crystallization, respectively. Using the Hoffman-Weeks method, the equilibrium melting point T-m(o) was estimated as 353 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter K-g of the isothermal melt crystallization was estimated as 5.49 x 10(5) K-2. The crystallization characteristics of PEKEKK (T/I) were compared with those of all-para PEKEKK. The differences were explained by differences in the chain flexibility of the two polymers.
Resumo:
Monte Carlo method has been applied to investigate the kinetic of grafting reaction in free radical copolymerization. The simulation is quits in agreement with that of theoretical and experimental results. It proves that the Monte Carlo simulation is an effective method for investigating the grafting reaction of free radical copolymerization. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Using poly(styrene-co-maleic anhydride) as the backbone and poly(ethylene glycol) methyl ether as side chains,three kinds of comblike polymers of different side chain length were synthesized. The Li-salt complexes and their firms were prepared. The dynamic mechanical properties were investigated. It was found that the main chain was rigid and the side chain was flexible in this comblike polymer system. Based on the time-temperature equivalence principle, a master curve was constructed. By selecting T-alpha as reference temperature, Arrhenius plots of shift factor and iso-free-volume plots were attained. The values of WLF parameters C-1 and C-2 increase with increasing salt concentration. By reference to T-0 = 50 degrees C, the relation between the average relaxation time 1g tau(c) and Li-salt concentration C is linear. The master curves are displaced progressively to higher frequencies as the M-w of side chains is increased. The relation between the average relaxation time 1g tau(n) and M-w of side chains is also linear. And the master curves are movable with the change of salts. It shows the effect of different kinds of salt on relaxation time.
Resumo:
The crystal of the title compound (C10H18N2O9SZn M-r=407.69) belongs to the hexagonal system, space group P 6(5) with cell parameters: a=11.411 (2), c=20.908(4) Angstrom, V=2357.7(7) Angstrom(3), Z=6, D-c=1.723g/cm(3), F(000)=1260, mu(MoKa)=1.743mm(-1). The final R and omega R factors are 0.072 and 0.178 respectively for 1335 observed reflections. in the structure, zinc ions are bridged by 4,4'-bipyridine to form infinite chains. The sheets containing parallel chains stack along a 65 screw axis to give a helical staircase motif. The helical structure is mainly controlled by the hydrogen bonds.
Resumo:
Optically pumped stimulated emission behavior in an organic film was demonstrated in this study. The gain material consists of a laser dye perylene doped into polystyrene (PS) matrix in an appropriate weight ratio. The sample was transversely pumped by the three harmonic output of a mode-locked Nd:YAG laser. The change of the emission spectra showed a clear threshold action and gain narrowing phenomenon when increasing the excitation intensity. Three emission peaks were observed below the excitation threshold, which are locate at 446, 475 and 506 nm, respectively. However, only the gain narrowing peak centered at 475 nm could be detected above the threshold. The spectra narrowing observed results from the amplified spontaneous emission (ASE) in the gain material. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The present report deals with some results on phase behavior, miscibility and phase separation for several polymer blends casting from solutions. These blends are grouped as the amorphous polymer blends, blends containing a crystalline polymer or two crystalline polymers. The blends of PMMA/PVAc were miscible and underwent phase separation at elevated temperature, exhibited LCST behavior. The benzoylated PPO has both UCST and LCST nature. For the systems composed of crystalline polymer poly(ethylene oxide) and amorphous polyurethane, of two crystalline polymers poly(epsilon-caprolactone) and poly[3,3,-bis-(chloromethyl) oxetane], appear a single T-g, indicating these blends are miscible. The interaction parameter B's were determined to be -14 J cm(-3), -15 J cm(-3) respectively. Phase separation of phenolphthalein poly(ether ether sulfone)/PEO blends were discussed in terms of thermal properties, such as their melting and crystallization behavior.
Resumo:
The comblike polymers based on poly (styrene-co-maleic anhydride) backbone with poly (ethylene glycol) methyl ether as side chains were synthesized and characterized by H-1 NMR. with the result compared with that of 1R. It is found that it is both feasible and simple to synthesize this kind of compounds with the help of H-1 NMR.
Resumo:
This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.