433 resultados para NI(ACAC)(2)-METHYLALUMINOXANE CATALYST
Resumo:
Liquid phase hydrodechlorination of chlorinated benzenes was studied over Ni/active carbon (Ni/AC), Ni/gamma-Al2O3, Ni/SiO2 and Raney Ni. The complete dechlorination of chlorobenzene (ClBz) was realized at 333-343 K on Ni/AC under hydrogen atmosphere of 1.0 MPa in the presence of alkaline hydroxide. Dichloro- and trichlorobenzenes were also hydrodechlorinated with 50-95% yields of benzene under the similar conditions, as above. The reaction follows zero-order to ClBz concentration and 1.9 order to hydrogen pressure. The reaction does not proceed in the absence of alkaline hydroxide, suggesting the complete coverage of active nickel surface with produced chlorine and the removal of the chlorine ion with hydroxide ion as a rate-limiting step. The active catalysts were characterized by H-2 chemisorption and transmission electron microscopy techniques. The apparent activity strongly depends on the active area of nickel on catalyst surface. (C) 2004 Published by Elsevier B.V.
Resumo:
Colloidal alumina was used to improve the activity of an In/HZSM-5 catalyst for the selective reduction of NO with CH4 in the excess of oxygen. Compared with In/HZSM-5, the In/HZSM-5/Al2O3 catalyst showed higher activity in a wide range of reaction temperatures. It is visualized that a synergetic effect between In/HZSM-5 and Al2O3 enhances the conversion of NOx. The addition of Al2O3 improved the conversion of NO to NO2 and facilitated the activation of methane. An In/HZSM-5/Al2O3 pre-treated with steam for 15 h at 700 degreesC still showed a high activity for the removal of NOx with methane, while an In/HZSM-5 similarly pre-treated with steam showed a lower activity than the fresh sample. The activity of the In/HZSM-5/Al2O3 catalyst could be restored completely after water vapor was removed from the feed gas. Furthermore, it was found that the In/HZSM-5/Al2O3 remained fairly active under high GHSV and O-2 concentration conditions. It was also interesting to find that an increase in NO content could enhance the conversion of methane, and this illustrates that the existence of NO is beneficial for the activation of methane. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The reduction of NO with CO in the presence of excess oxygen was investigated over different noble metal catalysts for probing the relationship between catalytic properties and adsorption behaviors. Among the four precious metal catalysts investigated, Ir/ZSM-5 was found to be the only active one for NO reduction with CO under lean conditions. With the decreasing of the Ir content, higher NO conversion and CO selectivity was obtained. Temperature-programmed reaction (TPR) studies of NO/H-2/O-2 and NO/CO/O-2 showed that the Pt/ZSM-5 was active when H-2 was used as the reductant, whereas, the Ir/ZSM-5 was active when CO was the reducing agent. This difference is due to the different mechanisms of the two reactions. Temperature-programmed desorption (TPD) of NO, CO and O-2 showed that NO could dissociate more easily over the Ir/ZSM-5 than on the Pt/ZSM-5, while the oxidation of CO by O-2 proceeded more rapidly on the Pt/ZSM-5 than on the Ir/ZSM-5. The presence of excess O-2 inhibited drastically the dissociation of NO, which is considered as the key step for the NO-CO reaction. The high dissociation rate of NO over the Ir/ZSM-5 is visualized as the key factor for its superior high activity in NO reduction with CO under lean conditions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The reduction of NO by CH4 in the presence of excess O-2 over Co/HZSM-5, Ni/HZSM-5 and Mn/HZSM-5 catalysts with microwave heating was studied. By comparing the activities of the catalysts in the microwave heating mode with that in the conventional reaction mode, it was demonstrated that microwave heating could greatly reduce the reaction temperature, and could clearly expand the temperature window of the catalysts. Especially for the Co/HZSM-5 catalyst, the maximum conversion of NO to N-2 in the conventional reaction mode was consistent with that in the microwave heating mode. However, the temperature window for the maximum conversion in the microwave heating mode was from 260 to 360degreesC instead of a temperature of 420degreesC in the conventional reaction mode. The results suggest that microwave heating has a novel effect in the reduction of NO.
Resumo:
A series of heteropolyphosphatotungstate catalysts with different W/P ratio were prepared by different means. P-31 MAS NMR spectra show every heteropolyphosphatotungstate contains several species with different W/P ratio. Combined with propylene epoxidation results, it is shown that the band at chemical shift ca. delta = 5 ppm maybe corresponds to a catalyst precursor which can be the most efficiently converted to the structure {PO4 [WO(O-2)(2)](4)}(3-). Characterization results of ICP show, the catalysts with low W/P ratio show a good reactivity for propylene epoxidation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A new quaternary ammonium heteropolyoxotungstant (cat.C) is prepared and characterized. And the cat.C also is an reaction-controlled phase-transfer catalyst. The catalytic system of O-2/EAHQ (2-ethylanthrahydroquinone)/cat.c is used for the epoxidation of propylene. Under the optimal conditions, the yield of propylene oxide based on EAHQ is 84.1%, the selectivity for propylene oxide based on propylene is 99.8% and the conversion of propylene based on EAHQ is 84.3%. The cat.c precipitates after the epoxidation reaction for easy separation. The cat. C is stable enough to be recycled three times without any loss in selectivity.
Resumo:
Nickel catalyst supported on carbon was made by reduction of nickelous nitrate with hydrogen at high temperature. Ni/ C catalyst characterization was carried out by XRD. It was found that the crystal phase of NiS and NiS2 appeared in the impregnated catalyst. Ni/ C and Pt/ C catalysts gave high performance as the positive and negative electrodes of a sodium polysulfide/ bromine energy storage cell, respectively. The overpotentials of the positive and negative electrodes were investigated. The effect of the electrocatalyst loading and operating temperature on the charge and discharge performance of the cell was investigated. A power density of up to 0.64 W cm(-2) ( V = 1.07 V) was obtained in this energy storage cell. A cell potential efficiency of up to 88.2% was obtained when both charge and discharge current densities were 0.1 A cm(-2).
Resumo:
A modified subcell approach was adopted to evaluate the current density distributions of proton exchange membrane fuel cells (PEMFCs) with different electrodes. Conventional hydrophobic electrodes showed better performance under flooding conditions compared to hydrophilic electrodes. The thin-film hydrophilic electrode performed better in the absence of liquid water, but it was more readily flooded. A composite catalyst layer was designed with 2/3 of the area from the inlet prepared hydrophilic and the remaining 1/3 area hydrophobic. The composite catalyst layer with commercial scale dimension showed notable enhanced performance in the concentration polarization region. (C) 2004 The Electrochemical Society.
Resumo:
The surface sites of MoP/SiO2 catalysts and their evolution under sulfiding conditions were characterized by IR spectroscopy using CO as the probe molecule. The HDS activities of thiophene were measured on the MoP/SiO2 catalyst that was subjected to different sulfidation and reactivation pretreatments. Cus Modelta+ (0 < delta less than or equal to 2) sites are probed on the surface of fresh MoP/SiO2 by molecularly adsorbed CO, exhibiting a characteristic IR band at 2045 cm(-1). The surface of MoP/SiO2 is gradually sulfided in HDS reactions, as revealed by the shift of the IR band at 2045 to ca. 2100 cm(-1). Although the surface of a MoP/SiO2 catalyst becomes partially sulfided, the HDS activity tests show that MoP/SiO2 is fairly stable in the initial stage of the HDS reaction, providing further evidence that molybdenum phosphide is a promising catalytic material for industrial HDS reactions. Two kinds of surface sulfur species are formed on the sulfided catalyst: reversibly and irreversibly bonded sulfur species. The MoP/SiO2 catalyst remains stable in the HDS of thiophene because most sulfur species formed under HDS conditions are reversibly bonded on the catalyst surface. A detrimental effect of presulfidation on the HDS activity is observed for the MoP/SiO2 catalyst treated by H2S/H-2 at temperatures higher than 623 K, which is ascribed to the formation of a large amount of the irreversibly bonded sulfur species. The irreversibly sulfided catalyst can be completely regenerated by an oxidation and a subsequent reduction under mild conditions. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst shows higher specific activity towards oxygen reduction reaction as compared to Pt/MWNTs when employed as cathodic catalyst in direct methanol fuel cell.
Resumo:
Ni - V - O series catalysts for the oxidative dehydrogenation (ODH) of propane were prepared and characterized by BET, XRD, H-2- TPR, O-2-TPD-MS and electrical conductivity. At 425 degreesC a C3H6 selectivity of 49.9% was observed on Ni0.9V0.1OY at a C3H8 conversion of 19.4%, and the obtained selectivity is almost two times higher than that over NiO at the roughly same conversion of C3H8. The mobile oxygen species created by the interaction of NiO and V2O5 has been found in the composite catalysts by O-2-TPD-MS and electrical conductivity studies, which seems to be responsible for the enhanced selectivity of the propane oxidative dehydrogenation.
Resumo:
Ce1-XNiXO2 oxides with X varying from 0.05 to 0.5 were prepared by different methods and characterized by XRD and TPR techniques. Ce(0.7)Mi(0.3)O(2) sample prepared by sol-gel method shows the highest reducibility and the highest catalytic activity for methane combustion. Three kinds of Ni phases co-exist in the Ce1-XNiXO2 catalysts prepared by sol-gel method: (i) aggregated NiO on the support CeO2, (ii) highly dispersed NiO with strong interaction with CeO2 and (iii) Ni atoms incorporated into CeO2 lattice. The distribution of different Ni species strongly depends on the preparation methods. The highly dispersed NiO shows the highest activity for methane combustion. The NiO aggregated on the support CeO2 shows lower catalytic activity for methane combustion, while the least catalytic activity is found for the Ni species incorporated into CeO2. Any oxygen vacancy formed in CeO2 lattice due to the incorporating of Ni atoms adsorbs and activates the molecular oxygen to form active oxygen species. So the highest catalytic activity for methane combustion on Ce0.7Ni0.3O2 catalyst is attributed not only to the highly dispersed Ni species but also to the more active oxygen species formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Some heterogeneous catalysts, cupric oxide supported on different supports, were prepared and employed to catalyze the cyclopropanation of styrene and 2,5-dimethyl-2,4-hexadiene with ethyl diazoacetate (EDA). The catalytic performance for cyclopropanation strongly depends on the nature of the support. A novel catalyst, CUO/TiO2-Al2O3, in which Al2O3 is modified with a monolayer TiO2, is found to be most active and selective for the cyclopropanation reaction. The yields of 93 and 94% cyclopropanes are obtained for styrene and 2,5-dimethyl-2,4-hexadiene at 40 degreesC as the substrates, respectively. The activity and selectivity in cyclopropanes are optimized with a monolayer dispersion of cupric oxide on the corresponding supports. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The surface sites of supported molybdenum carbide catalyst derived from different synthesis stages have been studied by in situ FT-IR spectroscopy using CO as the probe molecule. Adsorbed CO on the reduced passivated Mo2C/Al2O3 catalyst gives a main band at 2180 cm(-1), which can be assigned to linearly adsorbed CO on Mo4+ sites. The IR results show that the surface of reduced passivated sample is dominated by molybdenum oxycarbide. However, a characteristic IR band at 2054 cm-1 was observed for the adsorbed CO on MoO3/Al2O3 carburized with CH4/H-2 mixture at 1033 K (fresh Mo2C/Al2O3), which can be assigned to linearly adsorbed CO on Modelta+ (0 < delta < 2) sites Of Mo2C/Al2O3, Unlike adsorbed CO on reduced passivated Mo2C/Al2O3 catalyst, the IR spectra of adsorbed CO on fresh Mo2C/Al2O3 shows similarity to that on some of the group VIII metals (such as Pt and Pd), suggesting that fresh carbide resembles noble metals. To study the stability Of Mo2C catalyst during H-2 treatment and find proper conditions to remove the deposited carbon species, H-2 treatment of fresh Mo2C/Al2O3 catalyst at different temperatures was conducted. Partial amounts of carbon atoms in Mo2C along with some surface-deposited carbon species can be removed by the H, treatment even at 450 K. Both the surface-deposited carbon species and carbon atoms in carbide can be extensively removed at temperatures above 873 K.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with fluorescence detection has been developed. 9-(2-Hydroxyethyl)acridone reacts with coupling agent N,N-carbonyldiimidazole at ambient temperature to form activated amide intermediate 9-(2-acridone)oxyethylcarbonylimidazole (AOCD). The amide intermediate (AOCD) preferably reacts with amino compounds under mild reactions in the presence of 4-(dimethylamino)pyridine (base catalyst) in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum lambda(ex) 404 mn and an emission maximum at lambda(em) 440 nm. The labeled derivatives exhibit high stability under reversed-phase conditions. The fluorescence intensities of derivatives in various solvents or at different temperatures were investigated. The method, in conjunction with a gradient elution, offers a baseline resolution of the common amine derivatives on a reversed-phase C-18 column. The LC separation for the derivatized amines shows good reproducibility with acetonitrile-water including 2.5% DMF as mobile phase. The relative standard deviations (n = 6) for each amine derivative are <4.5%. The detection limits (at a signal-to-noise ratio of 3) per injection were 0.16-12.8 ng/mL. Further research for the field of application, based on the AOCD amide intermediate as derivatization reagent, for the determination of free amines in real water samples is achieved.