438 resultados para MISCIBLE BLENDS
Resumo:
The toughening effect of the separate phases of ethylene/propylene block copolymers and their blends was studied by scanning electron microscopy (SEM). The results obtained show that the interfacial adhesion between separate phases and the isotactic polypropene (iPP) matrix in ethylene/propylene block copolymers is strong at room temperature, but poor at low temperature; specimens exhibit tearing of separate phases during fracture at room temperature, but interfacial fracture between separate phases and the iPP matrix at low temperature. From the characteristics of fractographs of ethylene/propylene block copolymers and their blends, it could be concluded that the separate phases improve the toughness of specimens in several ways: they promote the plastic deformation of the iPP, and they can be deformed and fractured themselves during the fracture process. However, it was shown that the plastic deformation processes, such as multiple-crazing, shear yielding, etc. of the matrix are the dominant mechanisms of energy absorption in highly toughened ethylene/propylene block copolymers and their blends. The deformation and fracture of separate phases are only of secondary importance.
Resumo:
Blends with a liquid-crystal polymers (LCP) as one component show, in general, very interesting properties. Reduction of shear visocity and improvement of mechanical properties are very remarkable. High melting temperatures and high costs of the LCP limit the use of these blends. A new class of thermotropic LCPs with flexible spaces, with relatively low melting temperatures, can overcome the first problem. In this work, rheological and mechanical properties of blends of polypropylene with low contents of this LCP are presented. Torque during extrusion and viscosity decrease with LCP content. Elastic modulus is remarkably increased when the LCP phase is oriented.
Resumo:
The feasibility of applying the method of factor analysis to X-ray diffraction diagrams of binary blends of polypropylene and ethylene-propylene-diene terpolymer (PP/EPDM) was examined. The result of mathematical treatment was satisfactory. The number of scattering species and their concentrations in six kinds of PP/EPDM blends were determined. The separation of the spectral peaks of each species in the blends, contributing spectral intensities, was carried out.
Resumo:
Fractal behaviour of ramified domains in the late stage of spinodal phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by optical microscopic method. In the late stage of the spinodal decomposition, the fractal dimension D is about 1.64. It implies that some anomalous properties of irregular structure probably may be explained by fractal concepts.
Resumo:
The effect of micelle on crystallization behaviour of dilute poly(methyl methacrylate-b-tetrahydrofuran) diblock copolymer/tetrahydrofuran homopolymer, dilute poly (ethylene-b-styrene-b-ethylene) triblock copolymer/ethylene homopolymer solutions has been studied. The results show that with the structural teansitions from spherical to nonspherical micelle in the blends, great changes in the nucleation and spherulite morphologies take place.
Resumo:
The phase behaviours of poly(vinyl acetate) (PVAc) and poly(styrene-co-acrylonitrile)s (SAN) with poly(epichlorohydrin) (PECH) were examined using differential scanning calorimetry and an optical method using a hot plate. The PECH/PVAc blends showed LCST behaviour. The observed miscibility is thought to be a result of hydrogen-bonding interactions between the alpha-hydrogen atoms of PECH and the carbonyl groups of PVAc. Two SAN copolymers with an acrylonitrile (AN) content of 18 wt% (SAN18) and 25 wt% (SAN25), respectively, were also found to exhibit miscibility with PECH. No phase separation occurred by heating up to about 280-degrees-C, and the individual blend has a single, composition-dependent glass transition temperature. The formation of miscible PECH/SAN blends can be considered as a result of the intramolecular repulsion between styrene and AN units in SAN.
Resumo:
The morphology and mechanical behaviour of phenolphthalein poly(ether ether ketone) (PEK-C)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) blends has been investigated. A poly(ethylene oxide)-b-polystyrene-b-poly(ethylene oxide) (PEO-PS-PEO) triblock copolymer was used as compatibilizer. It was found that PEO-PS-PEO has a compatibilizing effect on the PEK-C/PPO blends. The addition of PEO-PS-PEO to the blends greatly improves phase dispersion and interfacial interfacial adhesion and also enhances the ultimate tensile strength and Young's modulus at compositions ranging from 30 to 70% PEK-C. However, all the values of the ultimate tensile strength within the whole composition range are lower than those expected by simple additivity, probably owing to the poor mechanical properties of PEO-PS-PEO copolymer.