276 resultados para Crystal Structure
Resumo:
The polycrystalline powder of the cyclic tetramer ester based on bisphenol-A and o-phthaloyldichloride has been prepared by recrystallization from nitrobenzene and its crystal structure determined by wide-angle X-ray diffraction. The unit cell is orthorhombic and has dimensions a=0.967 nm, b=0.8699 nm, c = 2.0859 nm. With two tetramers per unit cell, the crystal density is 1.36 g cm(-3). Indices of crystal diffraction peaks are also detailed in the present work. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
[(C6H5CH2C5H4)(2)GdCl . THF](2) (1) and (C6H5CH2C5H4)(2)ErCl . THF (2) were prepared by the reaction of LnCl(3) (Ln=Gd, Er) with benzylcyclopentadienyl sodium in THF and characterized by elemental analysis, IR, H-1 NMR, C-13 NMR, MS and thermal gravimetry. The crystal structures of both compounds were determined. Complex 1 is dimeric and its structure belongs to the monoclinic, P2(1)/c space group with a=1.1432(2), b=1.2978(2), c=1.7604(3) nm, beta=108.75(2), V=2.4732(9) nm(3), Z=2(four monomers), D-c=1.54 g . cm(-3). R=0.0342 and R(w)=0.0362. Complex 2 is monomer and its structure belongs to the orthorhombic, P2(1)2(1)2(1) space group with a=0.8645(2), b=1.1394(3), c=2.5289(4) nm, V=2.4919(9) nm(3), Z=4, D-c=1.56 g . cm(-3). R=0.0514, R(w)=0.0529. The determination of the crystal structure shows that in complex 1 the benzyl groups on the cyclopentadienyls coordinated to Gd3+ are located in the opposite direction (139 degrees); in complex 2 the benzyl groups on the cyclopentadienyls coordinated to Er3+ are located in the same direction (6.5 degrees).
Resumo:
The crystal structure of the title compound was determined by X-ray diffraction. The dysprosium ion is eight-coordinated by three oxygen atoms and three nitrogen atoms from three picolinato ions and two water oxygen atoms. The nitrogen atom and one carboxyl oxygen atom of each picolinato ion are coordinated to the same dysprosium ion to form a five-membered chelating ring. The title compound exists as discrete molecules in the crystal structure.
Resumo:
We present the synthesis of the AgLnMo(2)O(8) oxides with Ln = La-Nd, Sm, Gd, Tb and Y. These compounds represent a scheelite-related structure type characterized by MoO42- tetrahedrons. The IR spectra show three transmittance bands in the region of 1000-400 cm(-1), which correspond respectively to the nu(1), nu(2), and nu(3) modes of the tetrahedral MoO42- groups. All of AgLnMo(2)O(8) are insulator materials at room temperature. The temperature dependence of the magnetic susceptibilities of AgLnMo(2)O(8) (Ln = Ce-Nd, Sm, Gd, Tb) show Curie-Weiss Law behaviors with two anomalies occurring at low temperature, whereas AgLaMo2O8 and AgYMo2O8 both exhibit diamagnetic properties as expected. The magnetic moments at room temperature fit very well with those corresponding to rare earth sesquioxides. This suggests that rare earth ions exist in +3 oxidation state in all AgLnMo(2)O(8) compounds.
Resumo:
A novel organotin complex, EtPhSnCl(2) . 2HOC(10)H(6)CH = NC6H1OCH3 was synthesized, and its crystal structure was determined by X-ray diffraction method. The crystal is triclinic, belonging to space group,
with unit cell parameters a = 1.150 8(5) nm, b = 1. 153 1(5) gm, c = 1. 004 6 (3) nm, alpha = 94. 15 (3)degrees, beta = 115.47 (3)degrees, r = 85. 94 (4)degrees, V = 1199 7(1) nm(3), Z=2, D-c=1.68 g/cm(3), mu=13. 20 cm(-1), F(000)=618 for 4 131 reflections tions. R=0. 047, R(w)=0. 047. The ligand coordinates to tin atom via phenolic oxygen atom. The complex has a distored trigonal bipyramidal structure, the phenolic oxygen atom of the ligand and one of two chlorine atoms occupy the axial position. The distance between noncoodinated nitrogen atom with phenolic oxygen atom is 0. 257 4 nm, which indicates that the intramolecular hydrogen bond of Schiff base ligand is retained in the complex.
Resumo:
The compounds O(CH2CH2C5H4)(2)Ln(THF)(2) [Ln = Sm(1), Yb(2)] were synthesized by the reduction of O(CH2CH2C5H4)(2)LnCl with sodium metal in tetrahydrofuran (THF) at room temperature. Recrystallization of 2 from dimethoxyethane (DME) produced the single-crystal O(CH2CH2C5H4)(2)Yb(DME) (3) whose structure has been determined by an X-ray diffraction study. The crystals are orthorhombic, space group Pcab, with a = 14.168(4), b = 13.541(6), c = 19.314(8) Angstrom, Z = 8, D-calc. = 1.66 g cm(-3).
Resumo:
We present the synthesis of AgLnMo(2)O(8) compounds with Ln = La-Nd and Sm. These compounds represent a scheelite-type structure characterized by MoO4- tetrahedrons. IR spectra show five absorption peaks in the region of 1000-400cm(-1), around 800cm(-1) and 400cm(-1), which correspond to the modes of the tetrahedral MoO42- groups. All of AgLnMo(2)O(8) (Ln = La-Nd and Sm) oxides are dielectric materials at room temperature. The temperature dependence of the magnetic susceptibility ofAgLnMo(2)O(8) (Ln = Ce-Nd and Sm) shows Curie-Weiss law behavior from 100K to 300K. This indicates that both Ce and Pr exist in +3 oxidation state in AgLnMo(2)O(8). For AgLaMo2O8, diamagnetic properties are found as expected.
Resumo:
LnCl(3) (Ln = Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1:1 to give (C5H9C5H4)LnCl(2)(THF)(n) (or (C8H8)LnCl(2)(THF)(n)], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the title complexes. If Ln = Nd the complex (C8H8)Nd(C5H9C5H4)(THF)(2) (a) was obtained: when Ln = Gd the 1:1 complex [(C8H8)Gd(C5H9C5H4)(THF)][(C5H8)Gd(C5H9C5H4)(THF)(2)] (b) was obtained in crystalline form. The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)(2) (Ln = Nd or Gd), the Cyclopentylcyclopentadienyl (eta(5)), cyclooctatetraenyl (eta(8)) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10. The centroid of the cyclopentadienyl ring (Cp') in C5H9C5H4 group, cyclooctatetraenyl centroid (COT) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (eta(5)), cyclooctatetraenyl (eta(8)) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp', COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. - 0.0144 Angstrom).
Resumo:
The crystal structure of the title complex was established by X-ray diffraction analysis. Each scandium ion is seven-coordinated by two oxygen atoms and two nitrogen atoms from the picolinato ions, one water oxygen atom and two hydroxide ions. The nitrogen atom and one carboxyl oxygen atom of each picolinato ion are coordinated to the same scandium ion to form a five-membered chelating ring. Each hydroxide ion is coordinated to two scandium ions to form hydroxide bridges and a dimeric molecule unit.
Resumo:
LnCl3 (Ln = Nd, Er) reacts with K2C8H8 to yield the complex (C8H8)LnCl.2THF, which reacts with K(2,4-C7H11) (2,4-C7H11 = 2,4-dimethylpentadienyl) to form (C8H8)Ln(2,4-C7H11).THF. The compound (C8H8)Nd(2,4-C7H11).THF(1) crystallizes from the mixed solvent
Resumo:
LaCl3.2LiCl reacts with two equivalents of Bu(t)CpNa in THF to give the complex [(Bu(t)Cp)3LaClLi(THF)3]. The crystal structure was determined by X-ray diffraction at room temperature. Two units, (Bu(t)Cp)3La and Li(THF)3, are connected by a single chlo
Resumo:
The crystal structures and Mossbauer spectra of various mixed oxides LaFe1-xMnxO3 and LaFe1-xCoxO3 (x = 0 to 0.9) are determined and measured at room temperature. The results indicate that the crystal structure of both the La-Fe-Mn-O and the La-Fe-Co-O sy
Resumo:
In the structure of catena-poly[{triaqua(L-pro-line-O)erbium(III)}-bis-mu-(L-proline-O:O')-{triaqua-(L-proline-O)erbium(III)}-bis-mu-(L-proline-O:O') hexaperchlorate], each Er3+ ion is coordinated by five carboxyl O atoms from the L-proline molecules and three water molecules. Four of the SiX L-proline molecules act as bidentate bridging ligands to link the Er3+ ions through the carboxyl groups, thus producing a one-dimensional chain structure. The other two ligands coordinate unidentately to the rare-earth ions. Hydrogen bonds formed between the coordinated water molecules and between the water and unidentate proline ligand stabilize the polymeric chain.
Resumo:
The crystal structure analysis of {3-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-5-(2-hydroxyethyl)-4-methylthiazol}ium dithiocyanate reveals that there are two types of anion bridges between the two aromatic rings of the same thiamine which adopts the usual F conformation, one of which involves a contact between H(C2) on the thiazolium ring and the hydroxy O atom from a neighbouring molecule. The crystal packing shows a novel triple helical structure formed by strongly hydrogen-bonded thiamine-SCN- molecular chains.
Resumo:
catena-Poly[{pentaaqua(L-proline-O)-erbium-mu-(L-proline-O:O')} trichloride], {[Er(C5H9-NO2)2(H2O)5]Cl3}n, M(r) = 594.0, monoclinic, P2(1), a = 8.294 (1), b = 10.981 (3), c = 11.934 (3) angstrom, beta = 107.04 (2)degrees, V = 1039.2 (4) angstrom3, Z = 2, D(x) = 1.90 g cm-3, lambda(Mo Kalpha) = 0.71069 angstrom, mu = 45.2 cm-1, F(000) = 586, T = 298 K, R = 0.0244 for 1711 unique reflections [I > 3 sigma(I(o))]. The crystal consists of one-dimensional chains of infinite length in which one L-proline ligand bridges two neighboring Er ions, the other L-proline ligand being monodentate.