288 resultados para Binary Matrix
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) of oligosaccharides and polysaccharides has been investigated in detail, It is demonstrated that cationized species of oligosaccharides, [M+Na](+) and [M+K](+), are dominant products under the MALDI condition, and negative ions of oligosaccharides are not formed to any significant extent in this process, The molecular masses of polysaccharides are similarly determined by positive- and negative-ion MALDI-MS with the help of column chromatography. The distinction between positive- and negative-ion MALDI mass spectra of oligo-and polysaccharides indicates that the MALDI processes for saccharides vary with molecular mass. The matrix plays a more important role in the ionization process for oligosaccharides, while in the desorption process for polysaccharides. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Molecular weight of 8 ginsenosides and the component of total saponions in American ginseng have been determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The average error of the molecular weight of each ginsenoside was found less than 0.05%. The results demonstrate that MALDI-MS is a very simple and useful method to measure the molecular weight of some high polar, thermal unstable small molecules with high sensitivity and reproducibility.
Resumo:
Photophysical properties (e.g. luminescence and energy transfer) of binary and ternary complexes of Gd3+, Eu3+, and Tb3+ with aminobenzoic acids and 1,10-phenanthroline were studied in connection with their spectroscopic characterization. Intramolecular energy transfer between center ions and ligands as well as between ligands is discussed in detail.
Resumo:
Mixed liquid crystal formation has been studied in a new binary system comprising paranitroazobenzene derivatives, in which one component was a mesogen and the other was a non-mesogen. The mixtures were found to exhibit a monotropic nematic phase which was converted to an enantiotropic phase in specific ranges of temperature and concentration. The latent liquid crystal-isotropic transition temperature (LTP) of the non-mesogen was obtained by using the extrapolation method of the transition temperature-composition curve and the equal-G analysis method. The LTPs of the non-mesogen obtained by the above two methods showed good agreement with each other. The low-temperature transition of the mixtures detected by DSC was attributed to a change of the crystallite size.
Resumo:
Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the morphology of blends of PA1010 and polypropylene (PP) compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA). It is found that the morphologies are dependent on the content of glycidyl methacrylate in PP-g-GMA and the mixing time. The size of the dispersed PP particles decreases as the content of GMA in the PP-g-GMA increases for binary blends of PA1010 and PP-g-GMA. Similar results are obtained for changing the mixing time. Ternary blends of PA1010, PP, and PP-g-GMA indicate that morphologies depend on the content of glycidyl metyacrylate in the PP-g-GMA and the miscibility of PP and PP-g-GMA. By changing the content of GMA in PP-g-GMA, it was possible to introduce significant changes of morphology. A matrix removal TEM method is used to investigate the interfacial structure of PA1010/PP blends containing PP-g-GMA as a compatibilizer. This technique shows the reaction product between PA1010 and PP-g-GMA to be located at interface as a surrounding layer around domain particles. SEM observation on the interface shows that the adhesion between PA1010 and pure PP is very weak and their interface boundary is sharp. For the samples of PA1010 and PP-g-GMA, it was found that the interface was not so obvious, and the reaction between PA1010 and PP-g-GMA strengthens the interface significantly. (C) 1997 Elsevier Science Ltd.
Resumo:
A series of binary and ternary rare earth complexes with para-substitued benzoic acids and 1,10-phenanthroline were synthesized. The phosphorescence spectra were measured and the lowest tripler state energies of ligands were determined, the phosphorescence lifetimes were obtained and intramolecular energy transfer mechanism between ligands was studied. The luminescence properties were also measured and were in agreement with the prediction. The energy match and intramolecular energy transfer process in these binary and ternary complexes were discussed in detail.
Resumo:
Thirteen extracting solutions of rare-earth metallofullerenes containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb respectively have been investigated by means of matrix-assisted laser desorption/ionization time-of-night, mass spectrometry. The influences of the positive-ion/negative-ion mode, laser intensity, matrix and mass discrimination to the analytical results are studied, based on which the optimal analytical conditions have been determined. The results show that the extracting solutions contain large quantities of rare-earth metallofullerenes brs;des empty fullerenes, On the basis of comparing their relative intensities, the different structure stabilities and solubilities of metallofullerenes with different rare-earth metals encapsulated into the fullerene cages, as well as some possible reasons to those differences, are discussed.
Resumo:
Ternary complexes of rare earth Eu(dbm)(3).phen and Tb(acac)(3).phen (dbm = dibenzoylmethanide, acac = acetylacetone and phen = 1,10-phenanthroline) were introduced into silica gel by the sol-gel method. The result indicated that the rare earth ions (EU3+ and Tb3+) showed fewer emission lines and slightly lower emission intensities in the silica gel than in the pure rare earth complexes. The lifetimes of rare earth ions in silica gel (Eu3+ and Tb3+) doped with Eu(dbm)(3).phen and Tb(acac)(3).phen were longer than those in purl Eu(dbm)(3).phen and Tb(acac)(3).phen. A very small amount of rare earth complexes doped in a silica gel matrix can retain excellent luminescence properties. (C) 1997 Elsevier Science S.A.
Resumo:
A series of binary and ternary rare earth (Gd, Eu, Tb) complexes with ortho hydroxyl benzoic acid, pam aminobenzoic acid, nicotinic acid and 1,10-phenanthroline were synthesized. Phosphorescence spectra and lifetimes of Gd complexes were measured and the lowest triplet state energies of gadolinium binary complexes end the intramolecular energy transfer efficiencies were determined. The luminescence properties and energy transfer process of Eu3+ and Tb3+ complexes were discussed.
Resumo:
Results of photophysical properties of the complexes of Gd3+, Eu3+ and Tb3+ with conjugated carboxylic acids (3,4-funandicarboxylic acid and nicotinic acid) and 1,10-phenanthroline are reported. Whether between central ions and ligands or between the two ligands, it is found that the intramolecular energy efficiency is a sensitive function of the relative positions of the resonance energy levels of the central ions and the lowest triplet states of the ligands. Couplings of rare earth ions to the ligands are discussed in detail. (C) 1997 Elsevier Science S.A.
Resumo:
Ternary complexes of terbium with ortho (and pam) aminobenzoic acid and 1,10-phenanthroline were introduced into silica gel by the sol-gel method. The luminescence behavior of the solid-state samples was studied during the sol-gel aging process by means of emission. excitation spectra, lifetimes and quantum efficiencies.
Resumo:
A red color filter was laminated from a solution of red color pigment and an organo-soluble polyamide, based on 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and 2,2'-dimethyl-4,4'-methylene dianiline (DMMDA). The red color filter in a polyamide matrix with negative birefringence plays an important role in twisted nematic liquid crystal displays (TN-LCDs). The red color filter, and also compensation films, extend the viewing angle of LCDs. (C) 1997 Elsevier Science S.A.
Resumo:
Thirteen kinds of binary and ternary complexes of rare earth (Gd, Eu,Tb) with ortho (para) aminobenzoic acid and 1.10--phenanthroline were synthesized and characterized. The phosphorescence spectra and lifetimes of gadolinium complexes were measured and the lowest triplet state energies of ligands and the energy transfer efficiencies between ligands were determined. The luminescence properties and intramolecular energy transfer of these complexes were studied in details.
Resumo:
The modification of ethylene-propylene copolymer (EPM) has been accomplished by melt grafting of maleic anhydride (MAH) molecules promoted by radical initiators. The resulting EPM-g-MAH and EPM have been used to obtain binary nylon 1010/EPM or nylon 1010/EPM-g-MAH blends by melt mixing. It was found that the EPM-g-MAH copolymer used as the second component has a profound effect upon the properties of the resulting blends. This behavior has been attributed to a series of chemical and physicochemical interactions taking place between the two components. The interactions are due to the presence of the anhydride functionality on the copolymer and do not occur when this functionality is absent. The interaction has been confirmed by Fourier-transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopic.