245 resultados para 900
Resumo:
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/gamma-Al2O3 at temperatures of 800-900 degreesC. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm(-2) min(-1). After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm(-2) min(-1). SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 degreesC for more than 100 h without failure, with ethane conversion of similar to 100%, CO selectivity of >91% and oxygen permeation fluxes of 10-11 ml cm(-2) min(-1). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized. Cubic perovskite structures were formed for BaBi0.2COyFe0.8-yO3-delta (y less than or equal to 0.4) and BaBixCo0.2Fe0.8-xP3-delta (x=0.1-0.5) The materials exhibited considerable high oxygen permeability at high temperature. The oxygen permeation flux of BaBi0.2Co0.35Fe0.45O3-delta membrane reached about 0.77 x 10(-6) mol/cm(2) s under an air/helium oxygen partial pressure gradient at 900 degrees C, which was much higher than that of other bismuth-contained mixed conducting membranes. The permeation fluxes of the materials increased with the increase of cobalt content, but no apparent simple relationship was found with the bismuth content. The materials also demonstrated excellent reversibility of oxygen adsorption and desorption. Stable time-related oxygen permeation fluxes were found for BaBi0.2CO0.35Fe0.45O3-delta and BaBi0.3Co0.2Fe0.5O3-delta a membranes at 875 degrees C.
Resumo:
A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C-2 selectivity up to 40-70% was achieved, albeit that conversion rate were low, typically 0.5-3.5% at 800-900 degreesC with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/gamma -Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm(2) min oxygen permeation flux were achieved under steady state at 850 degreesC. Methane conversion and oxygen permeation flux increased with increasing temperature, No fracture of the membrane reactor was observed during syngas production. However, H-2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875 degreesC for more than 500h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm(2) min. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
It is easy to find that, in each language, the terms and phrases for the representation of spatial locating and orientation, and the ways for sharing spatial knowledge are very rich. The basic way of sharing spatial information is mapping our experience and actions with the environment by using terms and utterances that represent spatial relations. How to build the mapping relation among them and what factors affect the process of mapping are the questions need to be answered in this study. The whole course of expressing projective spatial relation includes the verbal expression and perception to the projective spatial relation. In experiment 1, the perceptual characteristics of perceiving the projective spatial relation was studied by analyzing the production latencies from the presentation of the stimulators in different directions (at 5 levels: 00, 22.50, 450, 67.50, and 900) to the onset of the corresponding buttons triggering on the keyboard, the study verifies the results of prior researches and revealed the foundation of expressing the projective spatial relation. In the experiment 2, and 3, the way and the role of the verbal expression were investigated. Subjects were asked to speak out the spatial relation between intended object and reference object by using verbal locative expressions. In experiment 2, Chinese was used as the verbal expression way, and in Experiment 3, English instead. Experiment 4 was similar as experiment 3, but time of voice key triggering was controlled and balanced among trials to verify the results of Experiment 3 further. Experiment 5 investigated the effect of pre-cue on the courses of expressing projective spatial relation. There were two kinds of clues, one was the spatial locative utterances, and the other was the perceptual coordinates framework, such as drawing a cross ”+” in a circle to imply four quadrants. The main conclusions of this research were as follows: 1. When speaking out a spatial relation, different sets of spatial terms, such as “left and right”, or “north and south”, affected the speed of verbal expression. Verbal coding process was affected by how well the perceptual salient direction matched with spatial terms, which made the speed of verbal expression different. 2. When using composite spatial terms to express diagonal directions, people tend to use direct mapping from spatial conceptual representation to composite spatial terms, rather than combining the two axes, which implied there existed direct one-on-one mapping between spatial conceptual representation and spatial terms. But during specific developing period, the way of combining two axes was employed as well for spatial expression, which meant perceptual salient directions played critical role in the process of perceiving and expressing projective spatial relations. 3. The process of verbal expression of the projective spatial relation was improved by the familiarity of spatial utterances, but this improvement was not the results of enhancement of the effect of prototypical diagonal direction.
Resumo:
The structure and properties of Sm overlayer and Sm/Rh surface alloy have been investigated with Auger electron spectroscopy (AES), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption spectroscopy (TDS). The growth of Sm on Rh(100) at room temperature (RT) appears following the Stranski-Krastanov growth mode and only the trivalent state Sm is observed from XPS results. Thermal treatment of the Sm film at 900 K leads to the formation of ordered surface alloy which shows the c(5 root2 x root2)R45 degrees and c(2 x 2) LEED patterns. Annealing the Sm film at temperature above 400 K makes the binding energy (B.E.) of Sm 3d(5/2) shift to higher energy by 0.7 eV, which indicates charge transfer from Sm to Rh(100) substrate, causing the increase of CO desorption temperature.