398 resultados para Örebro län


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New near-infrared-luminescent mesoporous materials were prepared by linking ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complexes to the ordered mesoporous MCM-41 through a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline. The resulting materials (denoted as Ln(hfth)(3)phen-M41 and Pr(tfnb)(3)phen-M41; Ln=Er, Yb, Nd, Sm; hfth = 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dionate; tfnb = 4,4,4-trifluoro-1-(2-naphthyl)- 1, 3-butanedionate) were characterized by powder X-ray diffraction, N-2 adsorption/desorption, and elemental analysis. Luminescence spectra of these lanthanide-complex functionalized materials were recorded, and the luminescence decay times were measured. Upon excitation at the absorption of the organic ligands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) ions by sensitization from the organic ligands moiety. The good luminescent performances enable these NIR-luminescent mesoporous materials to have possible applications in optical amplification (operating at 1300 or 1500 nm), laser systems, or medical diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkane elimination reactions of amino-amino-bis(phenols) H2L1-4, Salan H2L5, and methoxy-beta-diimines HL6,7 with lanthanide tris(alkyl) s, Ln(CH2SiMe3)(3)(THF)(2) (Ln = Y, Lu), respectively, afforded a series of lanthanide alkyl complexes 1-8 with the release of tetramethylsilane. Complexes 1-6 are THF-solvated mono( alkyl) s stabilized by O, N, N, O-tetradentate ligands. Complexes 1-3 and 5 adopt twisted octahedral geometry, whereas 4 contains a tetragonal bipyramidal core. Bearing a monoanionic moiety L-6 (L-7), complex 7 ( 8) is a THF-free bis(alkyl). In complex 7, the O, N, N-tridentate ligand combined with two alkyl species forms a tetrahedral coordination core. Complexes 1, 2, and 3 displayed modest activity but high stereoselectivity for the polymerization of rac-lactide to give heterotactic polylactide with the racemic enchainment of monomer units P-r ranging from 0.95 to 0.99, the highest value reached to date. Complex 5 exhibited almost the same level of activity albeit with relatively low selectivity. In contrast, dramatic decreases in activity and stereoselectivity were found for complex 4. The Salan yttrium alkyl complex 6 was active but nonselective. Bis(alkyl) complexes 7 and 8 were more active than 1-3 toward polymerization of rac-LA, however, to afford atactic polylactides due to di-active sites. The ligand framework, especially the "bridge" between the two nitrogen atoms, played a significant role in governing the selectivity of the corresponding complexes via changing the geometry of the metal center.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of indenyl-modified imidazolium bromide [C9H7CH2CH2(NCHCHN(C6H2Me3-2,4,6)CH)Br] ((IndH-NHC-H)Br) with rare earth metal tetra(alkyl) lithium (Ln(CH2SiMe3)(4)Li(THF)(4)) or with (trimethylsilylmethyl)lithium (LiCH2SiMe3) and rare earth metal tris(alkyl)s (Ln(CH2SiMe3)(3)(THF)(2)) sequentially afforded the first NHC-stabilized monomeric rare earth metal bis(alkyl) complexes (Ind-NHC)Ln(CH2SiMe3)(2) (1, Ln = Y; 2, Ln = Lu; 3, Ln = Sc) via double-deprotonation reactions. Complexes 1-3 are THF-free isostructural monomers. The monoanionic Ind-NHC species bond to the central metal ion in a eta(5):kappa(1) constrained geometry configuration (CGC) mode, which combine with the two cis-located alkyl moieties to form a tetrahedron ligand core, leading to the chirality of the complexes. Under the presence of activators AlEt3 and [Ph3C][B(C6F5)(4)], complex 2 showed catalytic activity toward the polymerization of isoprene to afford 3,4-regulated polyisoprene (91%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium, complex I supported by flexible amino-intino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL 2 with equintolar Ln(CH2SiMe3)3(THF)2, HL 2 was deprotonated by the metal alkyl and its imino C=N group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttriurn complex 3 without alkyl moiety was isolated when the molar ratio of HL 2 to Y(CH,SiMe3)3(THF)2 increased to 2: 1. Reaction of steric phosphino beta-ketoiminato ligand HL 3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL 4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses.All alkyl complexes exhibited high activity toward the ring-opening polymerization Of L-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The N,N- bidentate ligands 2- {( N- 2,6- R) iminomethyl)} pyrrole ( HL1, R) dimethylphenyl; HL2, R) diisopropylphenyl) have been prepared. HL1 reacted readily with 1 equiv of lanthanide tris( alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), affording lanthanide bis(alkyl) complexes L(1)Ln(CH2SiMe3)(2)(THF)(n) (1a, Ln= Lu, n = 2; 1b, Ln = Sc, n = 1) via alkane elimination. Reaction of the bulky ligand HL2 with 1 equiv of Ln(CH2SiMe3)(3)( THF)(2) gave the bis(pyrrolylaldiminato) lanthanide mono(alkyl) complexes L(2)(2)Ln- (CH2SiMe3)(THF) (2a, Ln) Lu; 2b, Ln = Sc), selectively. The N,N- bidentate ligand HL3, 2- dimethylaminomethylpyrrole, reacted with Ln( CH2SiMe3) 3( THF) 2, generating bimetallic bis( alkyl) complexes of central symmetry ( 3a, Ln = Y; 3b, Ln = Lu; 3c, Ln = Sc). Treatment of the N,N,N,N- tetradentate ligand H2L4, 2,2'-bis(2,2-dimethylpropyldiimino) methylpyrrole, with equimolar Lu(CH2SiMe3)(3)(THF)(2) afforded a C-2- symmetric binuclear complex ( 4). Complexes 3a, 3b, 3c, and 4 represent rare examples of THF- free binuclear lanthanide bis( alkyl) complexes supported by non- cyclopentadienyl ligands. All complexes have been tested as initiators for the polymerization of isoprene in the presence of AlEt3 and [ Ph3C][B(C6F5)(4)]. Complexes 1a, 1b, and 3a show activity, and 1b is the most active initiator, whereas 2a, 2b, 3b, 3c, and 4 are inert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anilido phosphinimino ancillary ligand H2L1 reacted with one equivalent of rare earth metal trialkyl [Ln{CH2Si(CH3)(3)}(3)(thf)(2)] (Ln = Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH3)(3)(THF)] (1a: Ln = Y; 1b: Ln = Lu). In this process, deprotonation of H2L1 by one metal alkyl species was followed by intramolecular C-H activation of the phenyl group of the phosphine moiety to generate dianionic species L-1 with release of two equivalnts of tetramethylsilane. Ligand L-1 coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex 1a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL1)LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C-H activation of the phenyl group is reversible. When 1a was exposed to moisture, the hydrolyzed dimeric complex [{(HL1)Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH2Si(CH3)(3)}(3)-(thf)(2)] with amino phosphine ligands HL2-R gave stable rare earth metal bisalkyl complexes [(L2-R)Ln{CH2Si(CH3)(3)}(2)(thf)] (4a: Ln=Y, R=Me; 4b: Ln=Lu, R=Me; 4c: Ln=Y, R=iPr; 4d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4a and 4c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L2-R)Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5a: R=Me; 5b: R=iPr).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)(2) (HL1) and Lu(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h generated mono(alkyl) complex (L-1)(2)Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)(2) (HL2) with Lu(CH2SiMe3)(3)(THF)(2) afforded (L-2)(2)Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L-2)(3)Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)(2) (HL3) swiftly reacted with Ln(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L(3)Ln(CH2SiMC3)(2)(THF)(n) (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)(4)], was able to catalyze the polymerization of ethylene to afford linear polyethylene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,6-Diisopropyl-N-(2-thienylmethyl) aniline ( H2L) has been prepared, which reacted with equimolar rare earth metal tris( alkyl)s, Ln( CH2SiMe3)(3)( THF)(2), afforded rare earth metal mono( alkyl) complexes, LLn(CH2SiMe3)(THF)(3) ( 1: Ln = Lu; 2: Ln = Y). In this process, H2L was deprotonated by one metal alkyl species followed by intramolecular C-H activation of the thiophene ring to generate dianionic species L2- with the release of two tetramethylsilane. The resulting L2- combined with three THF molecules and an alkyl unit coordinates to Y3+ and Lu3+ ions, respectively, in a rare N,C-bidentate mode, to generate distorted octahedron geometry ligand core. Whereas, with treatment of H2L with equimolar Sc(CH2SiMe3)(3)( THF)(2), a heteroleptic complex ( HL)( L) Sc( THF) ( 3) was isolated as the main product, where the dianionic L2- species bonds to Sc3+ via chelating N, C atoms whilst the monoanionic HL connects to Sc3+ in an S,N-bidentate mode. All complexes 1-3 have been characterized by NMR spectroscopy and X-ray diffraction analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

直接甲醇燃料电池(DMFC)是以固体聚合物为电解质,阳极以液相甲醇或蒸气相甲醇进料,阴极以空气或氧气为氧化剂.DMFC具有原料甲醇易储存、电池的理论电压高和能量效率高等特点,适于作电动车电源和便携式电源,具有广阔的发展前景.然而,在DMFC中,甲醇的阳极氧化涉及6个电子的传递过程,比氢气的氧化更困难,由于存在较高的阳极过电位,使得电池的实际输出电压低于理论电压;更为重要的是甲醇的部分氧化中间产物(CO)易使电催化剂中毒,因此,高效的阳极电催化剂一直是DMFC中的重要研究领域之一[1~7].目前解决这一问题的途径主要集中在对电催化剂的研究和改进上,如性能较好的Pt/Metal(oxide),即Pt复合金属或金属氧化物催化剂.稀土元素Ln系位于元素周期表中的B族,具有丰富的d轨道和f轨道电子,因此可以作为催化剂中的第二种金属元素加以研究.将稀土元素及其氧化物用于较低温度(250℃)下催化CO的化学氧化反应已早有研究[8].目前,已经有将Rh/Sm和Pt/Sm合金应用于CO的催化氧化反应的研究报道[9].本文选择几种稀土离子作为添加剂,研究了稀土离子对甲醇电氧化反应的影响.1实验部分1.1试剂与仪器甲醇(优级纯),...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly( ethylene oxide)-b-poly(N, N-dimethylacrylamide) (PEO-b-PDMA) was synthesized by successive atom transfer radical polymerization (ATRP) of N, N-dimethylacrylamide (DMA) monomer using PEO-Br macro initiators as initiator, CuBr and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetra decane (Me-6[14] aneN(4)) as catalyst and ligand. PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide. GPC and H-1 NMR studies show that the plot of ln([DMA](0)/[ DMA]) against the reaction time is linear, and the molecular weight of the resulting PDMA increased linearly with the conversion. Within 3 h, the polymerization can reach almost 60% of conversion. PEO-b-PDMA copolymer with low polydispersity index (M-w/M-n approximate to 1.1) is obtained. Self-assembly of PEO-b-PDMA in selective solvents is also studied. It could self-assemble into micelles in methanol/acetone (1/10, v/v) solution. TEM analyses of the PEO-b-PDMA micelles with narrow size distribution revealed that their size and shape depend much on the copolymer composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI(2)(THF)(2) (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)(2)Ln(II)(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl(3) (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)(2)Ln(III)Cl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the side-arms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for F-caprolactone (CL).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among complex oxides containing rare earth and manganese BaLn(2)Mn(2)O(7)( Ln = rare earth) with the layered perovskite type and Ln(2)(Mn, M)O-7 with pyrochlore-related structure were studied since these compounds show many kinds of phases and unique phase transitions. In BaLn(2)Mn(2)O(7) there appear many phases, depending on the synthetic conditions for each rare earth. The tetragonal phase of so-called Ruddlesden-Popper type is the fundamental structure and many kinds of deformed modification of this structure are obtained. For BaEu2Mn2O7 at least five phases have been identified from the results of X-ray diffraction analysis with the space group P4(2)/mnm, Fmmm, Immm and A2/m in addition to the fundamental tetragonal I4/mmm phase. In the pyrochlore-related type compounds, Ln(2)Mn(2-x)M(x)O(7)(M = Ta, Nb, W etc), there also appear several phases With different crystal structures. With regard to every rare earth, Ln(2)MnTaO(7) phase is stable only for excess Ta and can be obtained under high oxygen partial pressure process. This group has trigonal structure with zirkelite type ( P3(1)21 space group).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this presentation is to report a new result of afterglow materials. The Y2OS: Ln(3+) (Ln = Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sin(3+) and Tin(3+) in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the Irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method tinder 1050 degreesC, for 6 It have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be. useful in finding some new long-lasting phosphors with different colors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The near-infrared (NIR) luminescent lanthanide ions, such as Er(III), Nd(III), and Yb(III), have been paid much attention for the potential use in the optical communications or laser systems. For the first time, the NIR-luminescent Ln(dbm)(3)phen complexes have been covalently bonded to the ordered mesoporous materials MCM-41 and SBA-15 via a functionalized phen group phen-Si (phen-Si = 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline; dbm = dibenzoylmethanate; Ln = Er, Nd, Yb). The synthesis parameters X = 12 and Y = 6 h (X denotes Ln(dbM)(3)(H2O)(2)/phen-MCM-41 molar ratio or Ln(dbM)(3)(H2O)(2)/phenSBA-15 molar ratio and Y is the reaction time for the ligand exchange reaction; phen-MCM-41 and phenSBA-15 are phen-functionalized MCM-41 and SBA-15 mesoporous materials, respectively) were selected through a systematic and comparative study. The derivative materials, denoted as Ln(dbM)(3)phen-MCM-41 and Ln(dbm)(3)phen-SBA-15 (Ln = Er, Nd, Yb), were characterized by powder X-ray diffraction, nitrogen adsorption/desorption, Fourier transform infrared (FT-IR), elemental analysis, and fluorescence spectra. Upon excitation of the ligands absorption bands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide ions through the intramolecular energy transfer from the ligands to the lanthanide ions.