339 resultados para proton radiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of cost-effective, proton-conducting composite membranes, comprising of Nafion (R) ionomer, chitosan (CS). and polyvinyl alcohol (PVA), is successfully prepared. By taking advantage of the strong electrostatic interactions between Nafion (R) ionomer and CS component, Nafion ionomer is effectively implanted into the PVA/CS composite membranes, and improves proton conductivity of the PVA/CS composite membranes. Furthermore, this effect dramatically depends on the composition ratio of PVA/CS, and the optimum conductivity is obtained at the PVA/CS ratio of 1:1. The developed composite membranes exhibit much lower methanol permeability compared with the widely used Nafion (R) membrane, indicating that these novel membranes have great potential for direct methanol fuel cells (DMFCs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite membranes based on Sulfonated poly(ether ether ketone) (SPEEK) and sulfonated organically modified Si-SBA-15 (S-SBA-15) were investigated with the purpose of increasing the proton conductivity. The novelty of the composite membranes was attributed to two special structures and different ion exchange capacities (IEC) of S-SBA-15 fillers, which were embedded in membranes. The typical hexagonal channels array of S-SBA-15 was confirmed by XRD and TEM. The regular vermiculate and amorphous structures of the inorganic fillers were proved by SEM. Composite membranes were prepared through common solvent casting method. SEM images indicated that the inorganic filler with regular structure dispersed homogeneously in the composite membranes, but the amorphous filler caused an agglomeration phenomenon at the same loading content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel strategy in which the benzimidazole group and sulfonic group are simultaneously attached to an aromatic polymer has been reported in this paper. For this purpose, sulfonated poly(arylene ether ketone) copolymers containing carboxylic acid groups (SPAEK-x-COOH, x refers to the molar percentage Of sulfonated repeating units) are prepared by the aromatic nucleophilic polycondensation of sodium 5,5'-carbonyl-bis(2-fluobenzene-sulfonate) (SDFBP), 4,4'-difluorobenzophenone (DFBP) and phenolphthalin (PPL). Then the carboxylic acid groups attached to the SPAEK-x-COOH are transformed to benzimidazole units through condensation reactions (referred to as SPAEK-x-BI). Fourier transform infrared spectroscopy and H-1 NMR measurements are used to characterize and confirm the structures of these copolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel side-chain-type sulfonated poly(arylene ether ketone)s with pendant carboxylic acid groups copolymers (C-SPAEKs) were synthesized by direct copolymerization of sodium 5,5'-carbonyl-bis(2-fluorobenzenesulfonate), 4,4'-difluorobenzophenone and 4,4'-bis(4-hydroxyphenyl) valeric acid (DPA). The expected structure of the sulfonated copolymers was confirmed by FT-IR and H-1 NMR. Membranes with good thermal and mechanical stability could be obtained by solvent cast process. It should be noted that the proton conductivity of these copolymers with high sulfonation degree (DS > 0.6) was higher than 0.03 S cm(-1) and increased with increasing temperature. At 80 degrees C, the conductivity of C-SPAEK-3 (DS = 0.6) and C-SPAEK-4 (DS = 0.8) reached up to 0.12 and 0.16 S cm-1, respectively, which were higher than that of Nafion 117 (0.10 S cm(-1)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a simple and novel photochemical synthesis of different gold nanostructures is proposed using solar radiation. This method is rapid, convenient and of low cost, and can be performed under ambient conditions. By adjusting the concentration of sodium acetate (NaAc), different morphologies of the products can be easily obtained. Without NaAc, the products obtained are mainly polyhedral gold particles; lower concentration of NaAc (0.05 and 0.1 M) accelerates the formation of flowerlike gold nanostructures; while higher concentration of NaAc (0.5 M) facilitates the formation of a variety of gold nanowires and nanobelts. It is found that the morphology change of gold nanaostructures is the result of the synergistic effect of poly(diallyl dimethylammonium) chloride (PDDA), Ac- ions, and the pH value. In addition, the different gold nanostructures thus obtained were used as substrates for surface-enhanced Raman scattering (SERS) with p-aminothiophenol (p-ATP) as the probe molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel oxidation and water stable sulfonated polyimides (SPIs) were synthesized from 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), and wholly aromatic diamine 2,2'-bis(3-sulfobenzoyl) benzidine (2,2'-BSBB) for proton exchange membrane fuel cells. These polyimides could be cast into flexible and tough membranes from m-cresol solutions. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendant groups. Moreover, all BTDA-based SPI membranes exhibited much better water stability than those based on the conventional 1,4,5,8-naphthalenecarboxylic dianhydride. The improved water stability of BTDA-based polyimides was attributed to its unique binaphthalimide structure. The SPI membranes with ion exchange capacity (IEC) of 1.36-1.90 mequiv g(-1) had proton conductivity in the range of 0.41 x 10(-1) to 1. 12 x 10(-1) S cm(-1) at 20 degrees C. The membrane with IEC value of 1.90 mequiv g(-1) displayed reasonably higher proton conductivity than Nafion((R)) 117 (0.9 x 10(-1) S cm(-1)) under the same test condition and the high conductivity of 0.184 S cm(-1) was obtained at 80 degrees C. Microscopic analyses revealed that well-dispersed hydrophilic domains contribute to better proton conducting properties. These results showed that the synthesized materials might have the potential to be applied as the proton exchange membranes for PEMFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of sulfonated polymides containing benzimidazole groups were synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS) as the sulfonated diamine, and 2-(3',5-diaminophenyl)benzimidazole (a) or 6,4'-diamino-2-phenylbenzimidazole (b) as the nonsulfortated diamine. The electrolyte properties of the synthesized polyimides Ia-x, Ib-x, x refers to molar percentage of the sulfonated diamine) were investigated and compared with those of polyimides (Ic-x) from BTDA, ODADS, and m-phenylenediamine (c). All synthesized polyimides possessed high molecular weights revealed by their high viscosity, and formation of tough and flexible membranes. Polyintides with benzimidazole groups exhibited much better swelling capacity than those without benzimiclazole groups. This was attributed to the strong interchain interaction through basic benzimidazole functions and sulfonic acid groups. The sulfortated polyimides that are incorporated with 1, 1',8,8'-binaphthalimide exhibited better hydrolytic stability than that with 1,4,5,8-naphthalimide. Polyimide membranes with good water stability as well as high proton conductivity were developed. Polyimide membrane (Ia - 90), for example, did not lose mechanical properties after being soaked in boiling water for tOOO h, while its proton conductivity was still at a high level (compared to that of Nafion 117).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) of chitosan and phosphotungstic acid have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Phosphotungstic acid can be fixed within PECs membranes through strong electrostatic interactions, which avoids the decrease of conductivity caused by the dissolving of phosphotungstic acid as previously reported. Scanning electron microscopy (SEM) shows that the PECs membranes are homogeneous and dense. Fourier transform infrared spectroscopy (FTIR) demonstrates that hydrogen bonding is formed between chitosan and phosphotungstic acid. Thermogravimetric analysis (TGA) shows that the PECs membranes have good thermal stability up to 210 degrees C. The PECs membranes exhibit good swelling properties and low methanol permeability (P, 3.3 x 10(-7) cm(2) s(-1)). Proton conductivity (sigma) of the PECs membranes increases at elevated temperature, reaching the value of 0.024 S cm(-1) at 80 degrees C.