536 resultados para physical vapor deposition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hydrogen dilution profiling (HDP) technique has been developed to improve the quality and the crystalline uniformity in the growth direction of mu c-Si:H thin films prepared by hot-wire chemical-vapor deposition. The high H dilution in the initial growth stage reduces the amorphous transition layer from 30-50 to less than 10 nm. The uniformity of crystalline content X-c in the growth direction was much improved by the proper design of hydrogen dilution profiling which effectively controls the nonuniform transition region of Xc from 300 to less than 30 nm. Furthermore, the HDP approach restrains the formation of microvoids in mu c-Si: H thin films with a high Xc and enhances the compactness of the film. As a result the stability of mu c-Si: H thin films by HDP against the oxygen diffusion, as well as the electrical property, is much improved. (c) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quasi-aligned Eu2+-doped wurtzite ZnS nanowires on Au-coated Si wafers have been successfully synthesized by a vapor deposition method under a weakly reducing atmosphere. Compared with the undoped counterpart, incorporation of the dopant gives a modulated composition and crystal structure, which leads to a preferred growth of the nanowires along the [0110] direction and a high density of defects in the nanowire hosts. The ion doping causes intense fluorescence and persistent phosphorescence in ZnS nanowires. The dopant Eu2+ ions form an isoelectronic acceptor level and yield a high density of bound excitions, which contribute to the appearance of the radiative recombination emission of the bound excitons and resonant Raman scattering at higher pumping intensity. Co-dopant Cl- ions can serve not only as donors, producing a donor-acceptor pair transition with the Eu2+ acceptor level, but can also form trap levels together with other defects, capture the photoionization electrons of Eu2+, and yield long-lasting (about 4 min), green phosphorescence. With decreasing synthesis time, the existence of more surface states in the nanowires forms a higher density of trap centers and changes the crystal-field strength around Eu2+. As a result, not only have an enhanced Eu2+ -4f(6)5d(1)-4f(7) intra-ion transition and a prolonged afterglow time been more effectively observed (by decreasing the nanowires' diameters), but also the Eu2+ related emissions are shifted to shorter wavelengths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-quality AlGaN/GaN high electron mobility transistor (HEMT) structures were grown by metalorganic chemical vapor deposition (MOCVD) on 2-in. sapphire substrates. Two-dimensional electron gas (2DEG) mobility of 1410 cm(2)/Vs and concentration of 1.0X10(13) CM-2 are obtained at 295 K from the HEMT structures, whose average sheet resistance and sheet resistance uniformity are measured to be about 395 Omega/sq and 96.65% on 2-in. wafers, respectively. AlGaN/GaN HEMTs with 0.8 mu m gate length and 0.2 mm gate width were fabricated and characterized using the grown HEMT structures. Maximum current density of 0.9 A/ mm, peak extrinsic transconductance of 290 mS/mm, unity cutoff frequency (f(T)) of 20 GHz and maximum oscillation frequency (f(max) of 46 GHz are achieved. These results represent significant improvements over the previously fabricated devices with the same gate length, which are attributed to the improved performances of the MOCVD-grown HEMT structures. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influences of a high-temperature (HT) AlN interlayer (IL) on the phase separation in crack-free AlGaN grown on GaN have been studied. The depth-dependent cathodoluminescence (CL) spectra indicate a relatively uniform Al distribution in the growth direction, but the monochromatic CL images and the CL spectra obtained by line scan measurements reveal a lateral phase separation in AlGaN grown on relatively thick HT-AlN ILs. Moreover, when increasing the thickness of HT-AlN IL, the domain-like distribution of the AlN mole fraction in AlGaN layers is significantly enhanced through a great reduction of the domain size. The morphology of mesa-like small islands separated by V trenches in the HT-AlN IL, and the grain template formed by the coalescence of these islands during the subsequent AlGaN lateral overgrowth, are attributed to be responsible for the formation of domain-like structures in the AlGaN layer. (c) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quasi-aligned ZnO nanotubes have been grown on silicon substrates by metalorganic chemical vapor deposition without using any catalyst. Two kinds of ZnO nanotubular structures were found: Nanotubes with single walls and nanotubes with double walls. The nanotubes were grown along the [001] direction. Room-temperature photoluminescence measurements of the ZnO nanotubes indicate strong ultraviolet emission and weak green emission. A new growth mode for these ZnO nanotubes is proposed, which can be used to prepare other nanotubular structures. (c) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermal stability of InN in the growth environment in metalorganic chemical vapor deposition was systematically investigated in situ by laser reflectance system and ex situ by morphology characterization, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that InN can withstand isothermal annealing at temperature as high as 600 degrees C in NH3 ambient. While in N-2 atmosphere, it will decompose quickly to form In-droplets at least at the temperature around 500 degrees C, and the activation energy of InN decomposition was estimated to be 2.1 +/- 0.1 eV. Thermal stability of InN when annealing in NH3 ambient during temperature altering would be very sensitive to ramping rate and NH3 flow rate, and InN would sustain annealing process at small ramping rate and sufficient supply of reactive nitrogen radicals. Whereas In-droplets formation was found to be the most frequently encountered phenomenon concerning InN decomposition, annealing window for conditions free of In-droplets was worked out and possible reasons related are discussed. In addition, InN will decompose in a uniform way in the annealing window, and the decomposition rate was found to be in the range of 50 and 100 nm/h. Hall measurement shows that annealing treatment in such window will improve the electrical properties of InN. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) from a mixture of SiH4 diluted in H, The effect of hydrogen dilution ratios R-H = [H-2]/[SiH4] on microstructure of the films was investigated. Photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that more the crystalline volume fraction in the silicon films, the higher mobility life-time product (mu tau), better the stability and lower the photosensitivity. Those diphasic films contained 8%-31% crystalline volume fraction can gain both the fine photoelectronic properties and high stability. in the diphasic (contained 12% crystalline volume fraction) solar cell, we obtained a much lower light-induced degradation of similar to 2.9%, with a high initial efficiency of 10.01% and a stabilized efficiency of 9.72% (AM1.5, 100 mW/cm(2)). (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper frequency dependence of small-signal capacitance of p-i-n UV detectors, which were fabricated on GaN grown on sapphire substrate by metalorganic chemical vapor deposition, has been studied. The Schibli-Milnes model was used to analyze the capacitance-frequency characteristics. According to high frequency C-V measurements, the deep level mean concentration is about 2.98 x 10(20) cm(-3). The deep level is caused by the un-ionised Mg dopant. The calculated Mg activation energy is 260 meV and the hole thermal capture cross section of the deep level is about 2.73 x 10(-22) cm(2). The applicability of the Schibli-Milnes model is also discussed when the concentration of deep levels exceeds that of the heavily doped n-side. It is concluded that the analytic expression of the Schibli-Milnes model can still be used to describe the capacitance-frequency characteristics of GaN p-i-n UV detectors in good agreement with experiment. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have demonstrated stable self-starting passive mode locking in a diode-end-pumped Nd:Gd-0.8-Y0.5VO4 laser by using an In0.25Ga0.75As absorber grown at low temperature (LT In0.25Ga0.75As absorber). An In0.25Ga0.75As single-quantum-well absorber, which was grown directly on the GaAs buffer by use of the metal-organic chemical-vapor deposition technique, acts simultaneously as a passive mode-locking device and as an output coupler. Continuous-wave mode-locked pulses were obtained at 1063.5 nm. We achieved a pulse duration of 2.6 ps and an average output power of 2.15 W at a repetition rate of 96.4 MHz. (c) 2005 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasmaenhanced chemical vapor deposition (VHF-PECVD)from a mixture of SiH4 diluted in H-2. The effect of hydrogen dilution ratios R = [H-2]/[SiH4] on the microstructure of the films was investigated. The photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that the diphasic films gain both the fine photoelectric properties like a-Si: H and high stability like mu w-Si:H. By using the diphasic silicon films as the intrinsic layer, p-i-n junction solar cells were prepared. Current-voltage (J-V) characteristics and stability of the solar cells were measured under an AM1.5 solar simulator. We observed a light-induced increase of 5.2% in the open-circuit voltage (V-oc) and a light-induced degradation of similar to 2.9% inefficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the "electromagnetic" and "chemical" mechanism, were mainly responsible for the experiment results. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hall, current-voltage, and deep-level transient spectroscopy measurements were used to characterize the electrical properties of metalorganic chemical vapor deposition grown undoped, Er- and Pr-implanted GaN films. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. However, four defect levels located at 0.300, 0.188, 0.600, and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees C for 30 min, and four defect levels located at 0.280, 0.190, 0.610, and 0.390 eV below the conduction band were found in the Pr-implanted GaN films after annealing at 1050 degrees C for 30 min. The origins of the deep defect levels are discussed. (C) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructures of hydrogenated microcrystalline silicon (tic-Si: H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD(HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering(SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si: H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si: H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45° tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microcrystalline silicon thin films at different growth stages were prepared by hot wire chemical vapor deposition. Atomic force microscopy has been applied to investigate the evolution of surface topography of these films. According to the fractal analysis I it was found that, the growth of Si film deposited on glass substrate is the zero-diffused stochastic deposition; while for the film on Si substrate, it is the finite diffused deposition on the initial growth stage, and transforms to the zero-diffused stochastic deposition when the film thickness reaches a certain value. The film thickness dependence of island density shows that a maximum of island density appears at the critical film thickness for both substrates. The data of Raman spectra approve that, on the glass substrate, the a-Si: H/mu c-Si:H transition is related to the critical film thickness. Different substrate materials directly affect the surface diffusion ability of radicals, resulting in the difference of growth modes on the earlier growth stage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InGaN/GaN quantum dots were grown on the sapphire (0 0 0 1) substrate in a metalorganic chemical vapor deposition system. The morphologies of QDs deposited on different modified underlayer (GaN) surfaces, including naturally as grown, Ga-mediated, In-mediated, and air-passivated ones, were investigated by atomic force microscopy (AFM). Photo luminescence (PL) method is used to evaluate optical properties. It is shown that InGaN QDs can form directly on the natural GaN layer. However, both the size and distribution show obvious inhomogeneities. Such a heavy fluctuation in size leads to double peaks for QDs with short growth time, and broad peaks for QDs with long growth time in their low-temperature PL spectra. QDs grown on the Ga-mediated GaN underlayer tends to coalesce. Distinct transform takes place from 3D to 2D growth on the In-mediated ones, and thus the formation of QDs is prohibited. Those results clarify Ga and In's surfactant behavior. When the GaN underlayer is passivated in the air, and together with an additional low-temperature-grown seeding layer, however, the island growth mode is enhanced. Subsequently, grown InGaN QDs are characterized by a relatively high density and an improved Gaussian-like distribution in size. Short surface diffusion length at low growth temperature accounts for that result. It is concluded that reduced temperature favors QD's 3D growth and surface passivation can provide another promising way to obtain high-density QDs that especially suits MOCVD system. (c) 2004 Elsevier Ltd. All rights reserved.