246 resultados para phylogenetic analyses
Resumo:
During an occurrence of Hole-Rotten Disease of Laminaria japonica in a cultivating farm in Ma Shan Shandong province, China, 42 Gram-negative epiphytic marine bacteria were isolated and purified on Zobell 2216E marine agar medium. Morphological and biochemical characteristics of each isolated bacterium were studied, and molecular identification of bacterial strains was conducted with polymerase chain reaction amplification to 16S rRNA gene sequence analysis. Based on nearly full length of 16S rRNA gene sequence analysis, the isolated strains were bacteria that belong to genus Pseudoalteromonas, Vibrio, Halomonas and Bacillus. The percentage of each group was 61.9%, 28.6%, 7.1% and 2.4% respectively. The results of pathogenicity assay showed that 12 strains could cause the disease symptoms in sporophytes of L. japonica. They belonged to the genera Pseudoalteromonas, Vibrio and Halomonas with 58.3%, 33.3%, 8.3% respectively. The results suggest that these bacteria are the dominant marine bacteria on diseased sporophytes of L. japonica and may be the potential pathogenic bacteria associated with Hole-Rotten Disease of L. japonica.
Resumo:
The taxonomic characterization of two strains of Antarctic ice algae, Chlamydomonas sp. ICE-L and Chlamydomonas sp. ICE-W, were analyzed on the basis of morphological and molecular traits. The results indicate that they are the same species and belong to Chlamydomonas (Chlorophyta). According to I SS rDNA and ITS-I sequences they are very close relatives of Chlamydomonas sp. Antarctic 2E9, if not identified as such. They belong to the 'monadina clade', Cd. monadina and Cm. subdivisa as the sister group, on the basis of 18S rDNA sequence. They occur in 'Chlamydomonas clade' according to rbcL sequencing and are close relatives of Cd. kuwadae. The ITS sequences of ICE-L and ICE-W are 1302 base pairs and 1300 base pairs in length, the longest Volvocales ITS sequences ever reported.
Resumo:
The ecological characteristics of the deep-sea amoA-encoding archaea (AEA) are largely unsolved. Our aim was to study the diversity, structure and distribution of the AEA community in the sediments of the tropical West Pacific Continental Margin, to develop a general view of the AEA biogeography in the deep-sea extreme environment. Archaeal amoA clone libraries were constructed. Diverse and novel amoA sequences were identified, with the Bohol Sea, Bashi Strait and Sibuyan Sea harbouring the highest and the Bicol Shelf the lowest AEA diversity. Phylogenetic and statistical analyses illustrate a heterogeneous distribution of the AEA community, probably caused by the differential distribution of the terrestrial or estuarine AEA in the various sampling sites. The deep-sea sedimentary environments potentially harbour diverse and novel AEA in the tropical West Pacific Continental Margin. The stations in the Philippine inland seas (including station 3043) may represent AEA assemblages with various terrestrial influences and the stations connected directly to the open Philippine Sea may represent marine environment-dominant AEA assemblages. Our study indicates the potential importance of geological and climatic events in the transport of terrestrial micro-organisms to the deep-sea sedimentary environments, almost totally neglected previously.
Resumo:
Bacterial surface colonization is a universal adaptation strategy in aquatic environments. However, neither the identities of early colonizers nor the temporal changes in surface assemblages are well understood. To determine the identities of the most common bacterial primary colonizers and to assess the succession process, if any, of the bacterial assemblages during early stages of surface colonization in coastal water of the West Pacific Ocean, nonnutritive inert materials (glass, Plexiglas, and polyvinyl chloride) were employed as test surfaces and incubated in seawater off the Qingdao coast in the spring of 2005 for 24 and 72 h. Phylogenetic analysis of the 16S rRNA gene sequences amplified from the recovered surface-colonizing microbiota indicated that diverse bacteria colonized the submerged surfaces. Multivariate statistical cluster analyses indicated that the succession of early surface-colonizing bacterial assemblages followed sequential steps on all types of test surfaces. The Rhodobacterales, especially the marine Roseobacter clade members, formed the most common and dominant primary surface-colonizing bacterial group. Our current data, along with previous studies of the Atlantic coast, indicate that the Rhodobacterales bacteria are the dominant and ubiquitous primary surface colonizers in temperate coastal waters of the world and that microbial surface colonization follows a succession sequence. A conceptual model is proposed based on these findings, which may have important implications for understanding the structure, dynamics, and function of marine biofilms and for developing strategies to harness or control surface-associated microbial communities.
Resumo:
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the alpha-, gamma- and delta-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13A degrees N.
Resumo:
Molecular markers were used to identify and assess cultivars of Laminaria Lamx. and to delineate their phylogenetic relationships. Random amplified polymorphic DNA (RAPD) analysis was used for detection. After screening, 11 primers were selected and they yielded 133 bands in all, of which approximately 99.2% were polymorphic. The genetic distances between gametophytes ranged from 0.412 to 0.956. Two clusters were formed with the unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on the simple matching coefficient. All cultivars of Laminaria japonica Aresch. used for breeding in China fell into one cluster. L. japonica from Japan, L. saccharina (L.) Lam., and L. angustata Kjellm. formed the other cluster and showed higher genetic variation than L. japonica from China. Nuclear ribosomal DNA (rDNA) sequences, including internal transcribed spacers (ITS1 and ITS2) were studied and aligned. The nucleotides of the sequences ranged from 634 to 668, with a total of 692 positions including TTS1, ITS2, and the 5.8S coding region. The phylogenetic tree obtained by the neighbor-joining method favored, to some extent, the results revealed by RAPD analysis. The present study indicates that RAPD and ITS analyses could be used to identify and assess Laminaria germplasm and to distinguish some species and, even intraspecies, in Laminaria.
Resumo:
Resting cysts of the marine phytoplanktonic dinoflagellate Scrippsiella spp. are encountered in coastal habitats and shallow seas all over the world. Identification of Scrippsiella species requires information on cyst morphology because the plate pattern of the flagellated cell is conserved. Cysts from sediments of the East China Sea were identified based on traits from both the cysts and the thecal patterns of germinated cells. Calcareous cysts belonged predominantly to S. trochoidea (F. Stein) A. R. Loebl., S. rotunda J. Lewis, and S. precaria Montresor et Zingone. The former two species also produced smooth and noncalcified cysts in the field. A new species, S. donghaienis H. Gu sp. nov, was obtained from six noncalcified cysts with organic spines. These cysts are spherical, full of pale white and greenish granules with a mesoepicystal archeopyle. The vegetative cells consist of a conical epitheca and a round hypotheca with a plate formula of po, x, 4', 3a, 7 '', 6c (5c + t), 6 s, 5''', 2'''' and are morphologically indistinguishable from S. trochoidea. Results of internal transcribed spacer (ITS) sequence comparisons revealed that S. donghaienis was distinct from the S. trochoidea complex and appeared nested within the Calciodinellum/Calcigonellum clade. Culture experiments showed that the presence of a red body in the cyst and the shape of the archeopyle were constant within cell lines from one generation to the next, while the morphological features of the cyst wall, such as calcification and spine shape, appeared to be phenotypically plastic.
Resumo:
We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. splendidus. On the contrary, the isolates from the surfaces of G textorii, U. pertusa and L. japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.
Resumo:
The complete mitochondrial (mt) DNA sequence was determined for a ridgetail white prawn, Exopalaemon carinicauda Holthuis, 1950 (Crustacea: Decopoda: Palaemonidae). The mt genome is 15,730 bp in length, encoding a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which is typical for metazoans. The majority-strand consists of 33.6% A, 23.0% C, 13.4% G, and 30.0% T bases (AT skew = 0.057: GC skew = -0.264). A total of 1045 bp of non-coding nucleotides were observed in 16 intergenic regions,,including a major A+ T rich (79.7%) noncoding region (886 bp). A novel translocation of tRNA(Pro) and tRNA(Thr) was found when comparing this genome with the pancrustacean ground pattern indicating that gene order is not conserved among caridean mitochondria. Furthermore, the rate of Ka/Ks in 13 protein-coding genes between three caridean species is Much less than 1, which indicates a strong Purifying selection within this group. To investigate the phylogenetic relationship within Malacostraca, phylogenetic trees based oil Currently available malacostracan complete mitochondrial sequences were built with the maximum likelihood and Bayesian models. All analyses based oil nucleotide and amino acid data strongly support the monophyly of Decapoda. The Penaeidae, Reptantia, Caridea, and Meiura clades were also recovered as monophyletic groups with Strong Statistical Support. However, the phylogenetic relationships within Pleocyemata are unstable, as represented by the inclusion or exclusion of Caridea. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The jinjiang oyster Crassostrea rivularis [Gould, 1861. Descriptions of Shells collected in the North Pacific Exploring Expedition under Captains Ringgold and Rodgers. Proc. Boston Soc. Nat. Hist. 8 (April) 33-40] is one of the most important and best-known oysters in China. Based on the color of its flesh, two forms of C rivularis are recognized and referred to as the "white meat" and 11 red meat" oysters. The classification of white and red forms of this species has been a subject of confusion and debate in China. To clarify the taxonomic status of the two forms of C. rivularis, we collected and analyzed oysters from five locations along China's coast using both morphological characters and DNA sequences from mitochondrial 16S rRNA and cytochrome oxidase 1, and the nuclear 28S rRNA genes. Oysters were classified as white or red forms according to their morphological characteristics and then subjected to DNA sequencing. Both morphological and DNA sequence data suggest that the red and white oysters are two separate species. Phylogenetic analysis of DNA sequences obtained in this study and existing sequences of reference species show that the red oyster is the same species as C. ariakensis Wakiya [1929. Japanese food oysters. Jpn. J. Zool. 2, 359-367.], albeit the red oysters from north and south China are genetically distinctive. The white oyster is the same species as a newly described species from Hong Kong, C. hongkongensis Lam and Morton [2003. Mitochondrial DNA and identification of a new species of Crassostrea (Bivalvia: Ostreidae) cultured for centuries in the Pearl River Delta, Hong Kong, China. Aqua. 228, 1-13]. Although the name C. rivularis has seniority over C. ariakensis and C. hongkongensis, the original description of Ostrea rivularis by Gould [1861] does not fit shell characteristics of either the red or the white oysters. We propose that the name of C. rivularis Gould [1861] should be suspended, the red oyster should take the name C. ariakensis, and the white oyster should take the name C. hongkongensis. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Homoploid hybrid plant species are rare, and the mechanisms of their speciation are largely unknown, especially for homoploid hybrid tree species. Two contrasting hypotheses have been proposed to explain the origin of Hippophae goniocarpa: (1) it is a diploid hybrid originating from H. rhamnoides ssp. sinensis x H. neurocarpa ssp. neurocarpa, and (2) it originated via marginal differentiation from H. rhamnoides ssp. sinensis. Regardless of which of these hypotheses is true (if either), previous studies have suggested that H. rhamnoides ssp. sinensis is the only maternal donor for this hybrid species. In this study, we aim to elucidate the maternal composition of H. goniocarpa and to test the two hypotheses. For this purpose, we sequenced the maternal chloroplast DNA trnL-F region of 75 individuals representing H. goniocarpa, H. rhamnoides ssp. sinensis, and H. neurocarpa ssp. neurocarpa in two co-occurring sites of the taxa. Seven haplotypes were identified from three taxonomic units, and their phylogenetic relationships were further constructed by means of maximum parsimony, maximum likelihood, and network analyses. These seven haplotypes clustered into two distinct, highly divergent lineages. Two haplotypes from one lineage were found in H. rhamnoides ssp. sinensis, and five (representing the other lineage) in H. neurocarpa ssp. neurocarpa. Hippophae goniocarpa shared four common haplotypes from both lineages, but the haplotypes detected from the two populations differed to some extent, and in each case were identical to local haplotypes of the putative parental species. Thus, both H. rhamnoides ssp. sinensis and H. neurocarpa ssp. neurocarpa appear to have together contributed to the maternal establishment of H. goniocarpa. These results clearly demonstrate that the marginal origin hypothesis should be rejected, and support the hybrid origin hypothesis. Hippophae goniocarpa exhibits a sympatric distribution with its two parent species, without occupying new niches or displaying complete ecological isolation. However, this species has effectively developed reproductive isolation from its sympatric parent species. Our preliminary results suggest that H. goniocarpa may provide a useful model system for studying diploid hybrid speciation in trees. (c) 2008 The Linnean Society of London.
Resumo:
Repeated cycles of retreat and recolonization during the Quaternary ice ages are thought to have greatly influenced current species distributions and their genetic diversity. It remains unclear how this climatic oscillation has affected the distribution of genetic diversity between populations of wind-pollinated conifers in the Qinghai-Tibetan region. In this study, we investigated the within-species genetic diversity and phylogenetic relationships of Picea likiangensis, a dominant forest species in this region using polymorphic DNA (RAPD) markers. Our results suggest that this species has high overall genetic diversity, with 85.42% of loci being polymorphic and an average expected heterozygosity (H (E)) of 0.239. However, there were relatively low levels of polymorphism at population levels and the differences between populations were not significant, with percentages of polymorphic bands (PPB) ranging from 46.88 to 69.76%, Nei's gene diversity (H (E)) from 0.179 to 0.289 and Shannon's indices (Hpop) from 0.267 to 0.421. In accordance with our proposed hypothesis, a high level of genetic differentiation among populations was detected based on Nei's genetic diversity (G (ST) = 0.256) and AMOVA analysis (Phi (st) = 0.236). Gene flow between populations was found to be limited (Nm = 1.4532) and far lower than reported for other conifer species with wide distribution ranges from other regions. No clusters corresponding to three morphological varieties found in the south, north and west, respectively, were detected in either UPGMA or PCO analyses. Our results suggest that this species may have had different refugia during the glacial stages in the southern region and that the northern variety may have multiple origins from these different refugia.
Resumo:
Muscle samples were collected from small herbivorous mammals (Ochotona curzoniae, Microtus oecnomus, Myospalax fontanierii and Lepus oiostolus) at the alpine meadow ecosystem at the Tibetan Plateau in order to address variability in stable carbon isotope composition. Stable carbon isotope values of muscles remain steady and show no significant variations (-25.72 to -27.04 parts per thousand) among the four small mammal species. Based on the mass balance theory of stable isotopes, it is proposed that small herbivorous mammals mainly (or totally) rely on C3 grasses as food supply, and there is few or no distribution of C4 grasses at the ecosystem. The results reflect our previous study on the isotope patterns of plant species. Thus, stable carbon isotope analysis of muscles provides a method to address dietary selection and dietary variability in herbivores. In addition, stable carbon isotopic analyses can be used to address changes in vegetation distributions in ecosystem and paleovegetaion and paleoclimate.
Resumo:
The Ligularia-Cremanthodium-Parasenecio (L-C-P) complex of the Tussilagininae (Asteraceae: Senecioneae) contains more than 200 species that are endemic to the Qinghai-Tibetan Plateau in eastern Asia. These species are morphologically distinct; however, their relationships appear complex. A phylogenetic analysis of members of the complex and selected taxa, of the tribe Senecioneae was conducted using chloroplast (ndhF and trnL-F) and nuclear (ITS) sequences. Phylogenetic trees were constructed from individual and combined datasets of the three different sequences. All analyses suggested that Doronicum, a genus that has been included in the Tussilagininae, should be excluded from this subtribe and placed at the base of the tribe Senecioneae. In addition, the Tussilagininae should be broadly circumscribed to include the Tephroseridinae. Within the expanded Tussilagininae containing all 13 genera occurring in eastern Asia, Tussilago and NSPetasites diverged early as a separate lineage, while the remaining I I genera comprise an expanded L-C-P complex clade. We suggest that the L-C-P clade, which is largely unresolved, most likely originated as a consequence of an explosive radiation. The few monophyletic subclades identified in the L-C-P clade with robust support further suggest that some genera of Tussilagininae from eastern Asia require generic re-circumscriptions given the occurrence of subclades containing species of the same genus in different parts of the phylogentic tree due to homoplasy of important morphological characters used to delimit them. Molecular-clock analyses suggest that the explosive radiation of the L-C-P complex occurred mostly within the last 20 million years, which falls well within the period of recent major uplifts of the Qinghai-Tibetan Plateau between the early Miocene to the Pleistocene. It is proposed that significant increases in geological and ecological diversity that accompanied such uplifting, most likely promoted rapid and continuous allopatric speciation in small and isolated populations, and allowed fixation or acquisition of similar morphological characters within unrelated lineages. This phenomenon, possibly combined with interspecific diploid hybridization because of secondary sympatry during relatively stable stages between different uplifts, could be a major cause of high species diversity in the Qinghai-Tibetan Plateau and adjacent areas of eastern Asia. (c) 2005 Elsevier Inc. All rights reserved.