250 resultados para fluorescence induction kinetics
Resumo:
We explored the origin of power law distribution observed in single-molecule conformational dynamics experiments. By establishing a kinetic master equation approach to study statistically the microscopic state dynamics, we show that the underlying landscape with exponentially distributed density of states leads to power law distribution of kinetics. The exponential density of states emerges when the system becomes glassy and landscape becomes rough with significant trapping.
Resumo:
The binding-site number was calculated by using fluorescence spectroscopic method with bovine serum albumin(BSA) and Indo-1 as protein and ligand models, respectively. The method for calculating binding-site number in BSA for Indo-1 was developed based on the relationships between the changes of Indo-1 fluorescence intensity and the analytical concentration of BSA. And the interaction of BSA with Indo-1 was investigated comprehensively by using fluorescence techniques as well as fluorescence resonance energy transfer, and the thermodynamic parameters were calculated according to the changes of enthalpy on temperature.,
Resumo:
BACKGROUND: Thermodynamics and kinetics data are both important to explain the extraction property. In order to develop a novel separation technology superior to current extraction systems, many promising extractants have been developed including calixarene carboxylic acids. The extraction thermodynamics behavior of calix[4]arene carboxylic acids has been reported extensively. In this study, the mass transfer kinetics of neodymium(III) and the interfacial behavior of calix[4]arene carboxylic acid were investigated.
Resumo:
Extraction kinetics of thorium(IV) with primary amine N1923 in sulfate media has been investigated by a constant interfacial cell with laminar flow. Studies of interfacial tension and effects of the stirring rate, temperature, and specific interfacial area on mass transfer rate show that the most probable reaction zone takes place at the liquid-liquid interface. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the rate equation of extracting thorium has been obtained as follows: -d[Th(IV)]((o))/dt = 10(-3.10)center dot[Th(IV)](0.89)center dot[(RNH3)(2)SO4](0.74).
Resumo:
An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6'-phosphatehexyl)fluorene-alt-1,4-phenylene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3'-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer.
Resumo:
A new method for quantitative analysis of lactide has been developed by applying chemical kinetics to a HPLC system. The most important advance is its practical approach to the quantification of analytes that are unstable in the HPLC mobile phase. In HPLC analysis, anhydrous mobile phases cannot separate lactide from impurities, and only mixtures of water and organic solvent can achieve effective separation. By selecting conditions for testing and studying the kinetics of lactide hydrolysis, extensive experiments revealed that lactide degradation can be treated as a pseudo-first-order reaction under the given HPLC conditions, and lactide content or purity can be quantitatively determined. This method is practical for measuring the purity of the intermediate lactide in polylactic acid (PLA) production and the lactide content in PLA.
Resumo:
Herein, a sensitive and selective sensor for biothiols based on the recovered fluorescence of the CdTe quantum dots (QDs)-Hg(II) system is reported. Fluorescence of QDs could be quenched greatly by Hg(II). In the presence of biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), however, Hg(H) preferred to react with them to form the Hg(II)-S bond because of the strong affinity with the thiols of biothiols rather than quenching the fluorescence of the QDs. Thus, the fluorescence of CdTe QDs was recovered. The restoration ability followed the order GSH > Hcy > Cys due to the decreased steric hindrance effect. A good linear relationship was obtained from 0.6 to 20.0 mu mol L-1 for GSH and from 2.0 to 20.0 mu mol L-1 for Cys, respectively. The detection limits of GSH and Cys were 0.1 and 0.6 mu mol L-1, respectively. In addition, the method showed a high selectivity for Cys among the other 19 amino acids. Furthermore, it succeeded in detecting biothiols in the Hela cell.
Resumo:
Fluorescent oligonucleotide-stabilized Ag nanoclusters are demonstrated as novel and environmentally-friendly fluorescence probes for the determination of Hg2+ ions with a low detection limit and high selectivity.
Resumo:
Two simple triphenylamine/oxadiazole derivatives were synthesized and fully characterized; their multifunctionality as highly efficient non-doped blue fluorescence, excellent red phosphorescent host and single-doped two-color based white OLEDs has been demonstrated.
Resumo:
Single-walled carbon nanotubes (SWNTs) can selectively induce human telomeric i-motif DNA formation at pH 7.0. Based on this property, we design a DNA nanomachine induced by SWNTs on gold surface. The motor DNA is human telomeric G-quadruplex DNA. The reversible hybridization between the motor DNA and its complementary human telomeric i-motif DNA can be modulated by SWNTs without changing solution pH. Up to now, to our knowledge, there is no report to show that a DNA nanomachine is induced by SWNTs or a DNA nanomachine can detect i-motif formation at pH 7.0. Our work may provide a new concept for designing an SWNT-induced DNA nanomachine and for the detection of i-motif DNA structure at pH 7.0. DNA hybridization, conformational transition and i-motif formation have been characterized on surface or in solution by fluorescence confocal microscopy, circular dichroism, DNA melting and gel electrophoresis. The folding and unfolding kinetics of the DNA nanomachine on gold surface were studied by Fourier transform-surface plasmon resonance (FT-SPR). All these results indicate that SWNTs can induce the DNA nanomachine to work efficiently and reversibly.
Resumo:
We developed a coarse-grained yet microscopic detailed model to study the statistical fluctuations of single-molecule protein conformational dynamics of adenylate kinase. We explored the underlying conformational energy landscape and found that the system has two basins of attractions, open and closed conformations connected by two separate pathways. The kinetics is found to be nonexponential, consistent with single-molecule conformational dynamics experiments. Furthermore, we found that the statistical distribution of the kinetic times for the conformational transition has a long power law tail, reflecting the exponential density of state of the underlying landscape. We also studied the joint distribution of the two pathways and found memory effects.