261 resultados para coefficient reduction
3 METHODS FOR ESTIMATING TURBULENT STRESS AND DRAG COEFFICIENT IN TIDAL CURRENTS OF THE HANGZHOU BAY
Resumo:
The electrochemical impedance spectroscopy (EIS) at different potentials has been used to study the oxygen reduction reaction (ORR) in 3.5% NaCl solution on glassy carbon (GC) electrode in this work. Results show that ORR consists of three two-electron reaction steps and both superoxide ion (O-2(-)) and hydrogen peroxide (H2O2), which are produced by ORR, obstruct the diffusion of oxygen to the surface of the electrode and make the EIS results change into a transmissive finite diffusion process with the real part contraction and a reflective finite diffusion process from a semi-infinite diffusion process. The values of electron transfer resistance (R-t) and diffusion resistance (R-d) were calculated from EIS. O-2(-) influenced strongly on the Rt values and induced a maximum at -0.45 V.
Resumo:
The effects of marine environmental factors-temperature (T), dissolved oxygen (DO), salinity (S) and pH-on the oxidation-reduction potential (ORP) of natural seawater were studied in laboratory. The results show an indistinct relationship between these four factors and the ORP, but they did impact the ORP Common mathematical methods were not applicable for describing the relationship. Therefore, a grey relational analysis (GRA) method was developed. The degrees of correlation were calculated according to GRA and the values of T, pH, DO and S were 0.744, 0.710, 0.692 and 0.690, respectively. From these values, the relations of these factors to the ORP could be described and evaluated, and those of T and pH were relatively major. In general, ORP is influenced by the synergic effect of T, DO, pH and S, with no single factor having an outstanding role.
Resumo:
Since the acceptance of the electrochemical rusting mechanism, oxygen reduction has been considered the main cathodic process, while H+ reduction has been overlooked for the past four decades because oxygen can be readily renewed due to the thin layer Of Solution film formed during atmospheric corrosion. This study shows that measurable hydrogen call be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles, and a clear correlation exists between the quantities of hydrogen permeated through iron sheet and weight loss. Results Suggest the intrinsic importance of H+ reduction that merits further investigation. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Cyclic voltammetry, electrochemical impedance spectroscopy, and rotating disk electrode voltammetry have been used to study the effect of chloride ions on the dissolved oxygen reduction reaction (ORR) on Q235 carbon steel electrode in a 0.02 M calcium hydroxide (Ca(OH)(2)) solutions imitating the liquid phase in concrete pores. The results indicate that the cathodic process on Q235 carbon steel electrode in oxygen-saturated 0.02 M Ca(OH)(2) with different concentrations of chloride ions contain three reactions except hydrogen evolution: dissolved oxygen reduction, the reduction of Fe(III) to Fe(II), and then the reduction of Fe(II) to Fe. The peak potential of ORR shifts to the positive direction as the chloride ion concentration increases. The oxygen molecule adsorption can be inhibited by the chloride ion adsorption, and the rate of ORR decreases as the concentration of chloride ions increases. The mechanism of ORR is changed from 2e(-) and 4e(-) reactions, occurring simultaneously, to quietly 4e(-) reaction with the increasing chloride ion concentration.
Resumo:
An high-resolution prestack imaging technique of seismic data is developed in this thesis. By using this technique, the reflected coefficients of sheet sands can be gained in order to understand and identify thin oil reservoirs. One-way wave equation based migration methods can more accurately model seismic wave propagation effect such as multi-arrivals and obtain almost correct reflected energy in the presence of complex inhomogeneous media, and therefore, achieve more superiorities in imaging complex structure. So it is a good choice to apply the proposed high-resolution imaging to the presatck depth migration gathers. But one of the main shorting of one-way wave equation based migration methods is the low computational efficiency, thus the improvement on computational efficiency is first carried out. The method to improve the computational efficiency of prestack depth migration is first presented in this thesis, that is frequency-dependent varying-step depth exploration scheme plus a table-driven, one-point wavefield interpolation technology for wave equation based migration methods; The frequency-dependent varying-step depth exploration scheme reduces the computational cost of wavefield depth extrapolation, and the a table-driven, one-point wavefield interpolation technology reconstructs the extrapolated wavefield with an equal, desired vertical step with high computational efficiency. The proposed varying-step depth extrapolation plus one-point interpolation scheme results in 2/3 reduction in computational cost when compared to the equal-step depth extrapolation of wavefield, but gives the almost same imaging. The frequency-dependent varying-step depth exploration scheme is presented in theory by using the optimum split-step Fourier. But the proposed scheme can also be used by other wave equation based migration methods of the frequency domain. The proposed method is demonstrated by using impulse response, 2-D Marmousi dataset, 3-D salt dataset and the 3-D field dataset. A method of high-resolution prestack imaging is presented in the 2nd part of this thesis. The seismic interference method to solve the relative reflected coefficients is presented. The high-resolution imaging is obtained by introducing a sparseness- constrained least-square inversion into the reflected coefficient imaging. Gaussian regularization is first imposed and a smoothed solution is obtained by solving equation derived from the least-square inversion. Then the Cauchy regularization is introducing to the least-square inversion , the sparse solution of relative reflected coefficients can be obtained, that is high-resolution solution. The proposed scheme can be used together with other prestack imaging if the higher resolution is needed in a target zone. The seismic interference method in theory and the solution to sparseness-constrained least-square inversion are presented. The proposed method is demonstrated by synthetic examples and filed data.
Resumo:
Now low porosity and low permeability reservoir is one of the main targets of exploration for the onshore oilfields of China. Most of the reservoirs are none flowing because of bad formation percolation condition, poor gas oil ratio , low formation pressure coefficient and other factors. In the recent years, a number of domestic oilfields have carried out some research work and achieved some success on oil testing and production technology in such formation. But by now, there is still no systematic and mature technology, particularly testing technology in none flowing formation is still needed further study. Based on study the key problem of well testing and interpretation technology in none flowing formation, solve the important problems in well testing technology, continuously improve and innovate geological information acquisition technology for none flowing reservoir, accurately acquire boundary information and evaluate reservoir flow characteristics. Its wide application remarkable result has shown. The main results and cognitions obtained from research are as follows: 1. This new technology research results help solve the occurrent problems in well testing process for none flowing formations, such as small investigation radius, poor representative of interpretation results from the poor data, low level application of interpretation results. This new technology helps create favorable conditions for early precise reservoir evaluation and reduction of the risk of exploration. 2. The technological difficulties for none flowing well testing are successfully solved by using none flowing formation combined mechanical tool string .This method has been proved by its applications to be able to improve the efficiency of the testing and the quantity of the acquired test data ,and so as to enhance the application of the interpretation results of the test in development of oil fields. 3. The application of the rotary formation tester, selective test valve, well testing string and their allier tools help to resolve problems such as the operation of opening and shutting-in the well under different well conditions, to broaden the scope of well test technology for none flowing formations. 4. Refined Testing Technique for production Wells has greatly shortened the testing dwration and improved the efficiency and accuracy of operation, enriched test results, and at the same time created conditions for conducting multi-well interference well testing.
Resumo:
Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.
Resumo:
There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.
Resumo:
Origins of H_2S, thiols, thiophenes in natural gases and sulphur-enriched oils are complicated and thus some debates exist on them. The post-doctoral research is based upon oil- and gas-field data. Cases for study include Triassic Jianglingjiang Formation natural gases, Wolonghe Field, Sichuan Basin, Paleozoic oils and bitumen, Central Tarim, gases reserviored nearby Carboniferious - Ordovician unconformity, Hetianhe Field, Tarim Basin and sulphur-enriched oils in Tertiary reserviors in Jinxian Sag, Bohai Bay Basin. We have carried out analyses on the oils and gases for chemistry, δ~(13)C, δ~(34)S, and molecular composition of biomarkers, analyzed authigenetic pyrite forδ~(34)S, formation water for chemistry and δD and δ~(18)O along with petroleum system and burial history analyses, The aims are to assess the origins of the H2S and authigenetic pyrite, to discuss the possibility of reduced sulphur incorporation into hydrocarbons and to determine the mechanisms of hydrocarbon secondary alteration in the above four cases by comparison. The research shows that the reduced sulphur in the four cases is the result of thermochemical and biological sulphate reduction., TSR and BSR, respectively. No evidence indicates an origin of decomposition of organic matter or mantle - derived H2S in the cases. Elevated H_2S contents (up to 32%) in the Triassic Jialingjiang Formation are considered to result from TSR while relatively low H_2S (up to 2000ppm) in the Hetianhe Field resulted from BSR. However, it is not the case for the Central Tarim where relatively low H2S but abundant authigenetic pyrite occurr. Part of the H_2S in the Central Tarim reservoirs has reacted with iron released from clay minerals to precipitate pyrite. Thus, reduced sulphur δ~(34)S and reservoir temperatures rather than the H2S amount are reliable parameters to distinguish between TSR and BSR. TSR in Sichuan Basin Triassic Jialingjiang Formation and Central Tarim Paleozoic reservoirs are showed to take place at more than 125℃. the H2S and authigenetic pyrite have δ~(34)S close to parent anhydrite. In contrast, BSR in the reservoirs near the Carboniferous - Ordovician unconformity in the Hetianhe Field and in the Tertiary in the Jinxian Sag took place at temperatures less than 80℃with sulphide δ~(34)S as light as -24.9‰ and -12.5‰, anhydrite δ~(34)S as heavy as +26‰and +3 5-+40‰, respectively. Chemistry and isotopic composition of the natural gases change as the result of sulphate reduction. It has been observed that relative composition of light hydrocarbon gases is changed along with a rise in H_2S and CO_2. TSR in the Triassic Jialingjiang Formation and BSR in the Hetianhe Field result in a greater degree of preferential depletion of methane than larger molecular hydrocarbon gases. As TSR or BSR proceeds, hydrocarbon gases evolved to heavier carbon isotope as the result of kinetic isotopic fractionation, i.e., selective anaerobic oxidation of ~(12)C. Using the model of residual methane (Whiticar, 1999) to describe the relationship among the proportion of methane oxidation, isotopic shift and fraction factor, about 30% methane is calculated to have been oxidized during BSR in the western part of the Hetianhe Field. From the above, it can be concluded that in the area where H_2S is abundant, empiricalδ~(13)C -Ro relationships do not work. Sulphate reduction results in a rise in sulphur content, gravity and viscosity of an oil as well as changes in δ~(13)C and δ~(34)S. On special conditions, the reduced sulphur from sulphates might be incorporated into oils, i.e., the increasing sulphur is derived from secondarily reduced sulphur. A positive correlative relationship exists between sulphur content and δ~(34)S in the oils in Paleozoic reservoirs in Central Tarim, indicating that enhanced sulphur is ~(34)S-enriched, originated from TSR. The Jinxian oil with the highest sulphur content has the lightest δ~(34)S, suggesting part of the sulphur in the oil is ~(34)S-depleted, originated from BSR. In the Jinxian oil with increasing sulphur content, asphaltenes shows higher content and more negative δ~(13)C, and saturates shows evidence of biodegradetion and a decreasing content and a positive δ~(13)C shift. Thus, asphaltenes have δ~(13)C values closer to saturates. All the above indicate that the reduced sulphur has been incorporated into biodegradated saturates to generate new asphaltenes with relatively light δ~(13)C of saturates. Thiols and thiophenes in natural gases in the Triassic Jialingjiang Formation may result from reaction of H_2S with hydrocarbon. In the Jialingjiang Formation hydrocarbon gases are dominated by methane thus have a high dryness coefficient and thiols are showed to be positively related to H_2S content, suggesting that the thiols may result from H_2S reaction with short chain hydrocarbons. In contrast, high thiophenes occur in wet gases in Jurassic reservoirs with their source rock from sulphur - depleted type I kerogen, indicating that thiophenes may be a product of reaction of H2S with longer chain hydrocarbons.
Resumo:
Microwave effects have been shown to promote the activation of NOx molecules in the process of selective reduction of NO by CH4 over an In-Fe2O3/HZSM-5 catalyst and to enhance the water tolerance of this catalyst for NO reduction.
Resumo:
Selective reduction of NO by CH4 on an In-Fe2O3/H-ZSM-5 catalyst was investigated in the presence of excess oxygen. Compared with In/H-ZSM-5, the In-Fe2O3/H-ZSM-5 catalyst with high Fe2O3 contents showed higher activity in a wide range of reaction temperatures. It was found that the addition of Fe2O3 yielded a promotion effect on CH4 activation. The influence of water vapor on NO conversion was also investigated. The activity of the In/H-ZSM-5 catalyst has been found to be strongly inhibited by water vapor, while the In-Fe2O3/H-ZSM-5 catalyst remained fairly active in the presence of 3.3% steam. (C) 2000 Elsevier Science B.V. All rights reserved.