324 resultados para WAIS-III
Resumo:
The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP) and triisobutylphosphine sulphide (TIBPS, B) is investigated in the extraction of lanthanum(III) from chloride solution. Lanthanum(III) is extracted by the mixture as LaCl2.PMBP.B-0.5 instead of La(PMBP)(3).(HPMBP) which is extracted by HPMBP alone. The equilibrium constants and thermodynamic functions such as DeltaG, DeltaH and DeltaS are determined. The extraction of other rare earth ions by mixtures of HPMBP and TIBPS is also studied and the possibility of separating rare earth ions is discussed.
Resumo:
The interaction of DNA with Tris(1,10-phenanthroline) cobalt(III) was studied by means of atomic force microscopy. Changes in the morphologies of DNA complex in the presence of ethanol may well indicate the crucial role of electrostatic force in causing DNA condensation. With the increase of the concentration of ethanol, electrostatic interaction is enhanced corresponding to a lower dielectric constant. Counterions condense along the sugar phosphate backbone of DNA when e is lowered and the phosphate charge density can thus be neutralized to the level of DNA condensation. Electroanalytical measurement of DNA condensed with Co(phen)(3)(3+) in ethanol solution indicated that intercalating reaction remains existing. According to both the microscopic and spectroscopic results, it can be found that no secondary structure transition occurs upon DNA condensing. B-A conformation transition takes place at more than 60% ethanol solution.
Resumo:
Such physicochemical properties of sec-nonylphenoxy acetic acid (CA-100) as the solubility in water, acid dissociation constant in water, dimerization constant in heptane, and distribution constant in organic solvent-water were measured by two-phase titration. The extraction behaviors of scandium (III), yttrium (III), lanthanides (III), and divalent metal ions from hydrochloric acid solutions with CA-100 in heptane have been investigated, and the possibilities of separating scandium (yttrium) from lanthanides and divalent metal ions have been carefully discussed. The stoichiometries of the extracted metal complexes were investigated by the slope-analysis technique. The effect of the nature of diluent on the extraction of yttrium (III) with CA100 has been studied and correlated with the dielectric constant.
Resumo:
To simplify the abstraction of descriptors, for the correlation analysis of the stability constants of gadolinium(III) complexes and their ligand structures, aiming at gadolinium(III) complexes, we only considered the ligands and ignored the common parts of the structures, i.e., the metal ions. Quantum-chemical descriptors and topological indices were calculated to describe the structures of the ligands. Multiple regression analysis and neural networks were applied to construct the models between the ligands and the stability constants of gadolinium(III) complexes and satisfactory results were obtained.
Resumo:
A new kind of luminescent organic-inorganic hybrid material (denoted Hybrid I) consisting of europium 1,10-phenanthroline complexes covalently attached to a silica-based network was prepared by a sol-gel process. 1,10-Phenanthroline grafted to 3-(triethoxysilyl)propyl isocyanate was used as one of the precursors for the preparation of an organic-inorganic hybrid materials. For comparison purposes, the hybrid material (denoted Hybrid II) in which phenanthroline was not grafted onto the silica backbone of the frameworks was also prepared. Elemental analysis; NMR, FT-IR, UV/vis absorption, and luminescence spectroscopies, and luminescence decay analysis were used to characterize the obtained hybrid materials. It is shown that the homogeneity of Hybrid I is superior to that of Hybrid II, and a higher concentration europium can be incorporated into Hybrid I than Hybrid II. Excitation at the ligand absorption wavelength (283 nm) resulted in the strong emission of the Eu3+ D-5(0)-F-7(J) (J = 0-4) transition lines as a result of the efficient energy transfer from the ligands to the EU3+ in Hybrid I. The number of water molecules coordinated to the europium ion was estimated, and the structure of the as-synthesized Hybrid I was predicted on the basis of the experimental results.
Resumo:
A multi-phase model of Pr(III) speciation in human interstitial fluid was constructed and insoluble Pr(III) speciation was studied. When the total concentration of Pr(III) is below 8.401E-10 mol/L, soluble Pr(III) species are main species. With rising the total concentration of Pr(III), Pr(III) is firstly bound to phosphate to form precipitate of PrPO4, then bound to carbonate and another precipitate of Pr-2(CO3)(3) was obtained. When the total concentration is between 1.583E-9 mol/L and 4.000E-3 mol/L, the insoluble species are predominant Pr(III) species.
Resumo:
The Yttrium(III) extraction kinetics and mechanism with secnonylphonoxy acetic acid (CA-100) were investigated by a constant interfacial cell with laminar flow. The studies of interfacial tension and solubility of extractant and effects of the stirring rate, temperature, specific interfacial area and species concentration on the extraction rate showed that the extraction regime was dependent on the extraction conditions and the most probable reaction zone was at the liquid-liquid interface. The rate equation of extracting yttrium by CA-100 in heptane was Rf = k[Y3+]((a))[H(2)A(2)]((o))(0.88)[H+]((a))(-1.08).
Resumo:
A novel terbium complex, Tb(acac)(3)AAP (acac: acetylacetone, AAP: 4-amino-antipyrine), was synthesized and its luminescent properties were studied. When it was used as an emitting center, triple-layer-type device with a structure of glass substrate/ITO (indium-tin oxide)/TPD (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine)./Tb(acac)(3)AAP/PBD (2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole) or Alq(3) (tris(8-hydroxyquinolinato) aluminum)/Al (aluminum) exhibited bright characteristic emission of terbium ion upon applying d.c. voltage. The maximum luminance of the device is 56 cd/m(2) at 19 V and the maximum luminance efficiency is 0.357 lm/W.
Resumo:
[NH3CH2CH2CH2NH2][NH3CH2CH2CH2NH3](2)[(As2AsMo8V4O40)-As-III-Mo-V-O-IV].3H(2)O was hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Crystal data: monoclinic, C2/c, a = 45.375(9) Angstrom, b = 11.774(2) Angstrom, c = 23.438(5) Angstrom, beta = 96.62(3)degrees. X-ray crystallographic study showed that the crystal structure was constructed by bicapped alpha-Keggin fragments [(As2AsMo8V4O40)-As-III-Mo-V-O-IV](5-) polyoxoanion. The title compound had a high catalytic activity for the oxidation of benzaldehyde to benzoic acid using H2O2 as oxidant in a liquid-solid biphase system.
Resumo:
Crystallization and melting behavior of short ethylene sequence of metallocene ethylene/alpha -olefin copolymer with high comonomer content have been studied by standard DSC and modulated-temperature differential scanning calorimetry (M-TDSC) technique. In addition to high temperature endotherm around 120 degreesC, a low temperature endotherm is observed at lower temperatures (40-80 degreesC), depending on time and temperature of isothermal crystallization. The peak position of the low temperature endotherm T-m(low) varies linearly with the logarithm of crystallization time and the slope, D, decreases with increasing crystallization temperature T-c. The T-m(low) also depends on the thermal history before the crystallization at T-c, and an extrapolation of T-m(low) (30.6 degreesC) to a few seconds has been obtained after two step isothermal crystallization before the crystallization at 30 degreesC. The T-m(low) is nearly equal to T-c, and it indicates that the initial crystallization at low temperature is nearly reversible. Direct evidence of conformational. entropy change of secondary crystallization has been obtained by using M-TDSC technique. Both the M-TDSC result and the activation energy analysis of temperature dependence suggest that crystal perfection process and conformational entropy decreasing in residual amorphous co-exist during secondary crystallization.
Resumo:
Indium(III) hexacyanoferrate(II/III) (InHCF) supported on graphite powder was prepared using the in situ chemical deposition procedure and subsequently dispersed into methyltrimethoxysilane-derived gels to yield a conductive graphite organosilicate composite. The composite was used as the electrode material to fabricate a three-dimensional InHCF-modified electrode. InHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The chemically modified electrode can electrocatalyze the oxidation of thiosulfate, and exhibits a good repeatability of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability.
Resumo:
Rare earth(III)-histidine (His)- tryptophane (Trp). Ca(II)-His-Trp and Zn(II)-His-Trp systems were studied by potentiometric titration and computer simulation under physiological conditions. The species of the systems and their stability constants were determined. The distributions of species of rare earth(III), Ca(II) and Zn(II) were discussed.
Resumo:
The rate of extraction of Er(III) from aqueous acetate solutions at 0. 2 mol/L ionic strength by HBTMPTP in n-heptane was studied by using a constant interfacial area cell with laminar flow at (30+/- 0. 5)degrees C. The interfacial activity of HBTMPTP was investigated at n-heptane/0. 2 mol/L (H, Na)Ac (pH=5. 00) interface, The rate of Er(III) extraction was measured at different chemical compositions by varying hydrogen ion, HBTMPTP, Cyanex 302 and chlorine ion concentrations, The effect of stirring speed, temperature and special interfacial area on the rate of extraction was also studied. The results showed that, under the conditions of the experiments, the overall rate is diffusion controlled, that the impurities of Cyanex 302 have the effect of synergistic extraction.
Resumo:
Speciation of Pr(III) in human blood plasma has been investigated by computer simulation. The speciation and distribution of Pr(III) has been obtained. It has been found that most of Pr(III) is bound to phosphate and to form precipitate. The results obtained-are in accord with experimental observations.