270 resultados para TiO2 nanotubular arrays
Resumo:
Myoglobin molecules were deposited on a surfactant sodium dodecyl sulfate modified HOPG surface and imaged in air with a high resolution scanning tunneling microscope (STM) for the first time. STM images exhibit not only ordered arrays of the surfactant m
Resumo:
There is a need for methodology to warm open-field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45 degrees from horizontal and combining six of them in a hexagonal array, good uniformity of warming was achieved across 3-m-diameter plots. Moreover, there do not appear to be obstacles (other than financial) to scaling to larger plots. The efficiency [eta(h) (%); thermal radiation out per electrical energy in] of these heaters was higher than that of the heaters used in most previous infrared heater experiments and can be described by: eta(h) = 10 + 25exp(-0.17 u), where u is wind speed at 2 m height (m s(-1)). Graphs are presented to estimate operating costs from degrees of warming, two types of plant canopy, and site windiness. Four such arrays were deployed over plots of grass at Haibei, Qinghai, China and another at Cheyenne, Wyoming, USA, along with corresponding reference plots with dummy heaters. Proportional integral derivative systems with infrared thermometers to sense canopy temperatures of the heated and reference plots were used to control the heater outputs. Over month-long periods at both sites, about 75% of canopy temperature observations were within 0.5 degrees C of the set-point temperature differences between heated and reference plots. Electrical power consumption per 3-m-diameter plot averaged 58 and 80 kW h day(-1) for Haibei and Cheyenne, respectively. However, the desired temperature differences were set lower at Haibei (1.2 degrees C daytime, 1.7 degrees C night) than Cheyenne (1.5 degrees C daytime, 3.0 degrees C night), and Cheyenne is a windier site. Thus, we conclude that these hexagonal arrays of ceramic infrared heaters can be a successful temperature free-air-controlled enhancement (T-FACE) system for warming ecosystem field plots.
Resumo:
Adsorption and interaction of H2S/SO2 on titania as well as on alumina for comparison has been studied by temperature programmed desorption (TPD), infrared (IR) spectroscopy and temperature programmed electronic conductivity (TPEC) techniques. It was found that the adsorption of both H2S acid SO2 on TiO2 is much greater than on Al2O3. The electronic conductivity of TiO2 measured by TPEC varies significantly as adsorption and desorption takes place on TiO2, showing a strong interaction between TiO2 and adsorbates. At temperature above 200 degrees C, H2S or SO2 adsorbed on TiO2 can be converted into S, H2O and SO2 or SO3. While on the hydrogen treated TiO2, H2S is decomposed into S and H-2, SO2 into S. The active sites on TiO2 surface cannot be so strongly adsorbed by SO2 that it is much more resistant to the sulfation reaction. Unlike TiO2, Al2O3 only provides surface adsorption sites, which can be readily sulfated. The data obtained support one's understanding why TiO2 exhibits a better catalytic performance than that of Al2O3 as a Claus reaction catalyst. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Oxygen spillover and back spillover on Pt/TiO2 catalysts have been studied by a potential dynamic sweep method. The characteristics of I-V profiles of Pt/TiO2 electrodes in the three potential sweep regions are different from those of Pt and TiO2 electrodes. The catalytic role of Pt/TiO2 in oxygen spillover and back spillover is identified. It decreases, and the electrochemical oxygen adsorption (or desorption) increases with elevating temperature of hydrogen post-treatment of Pt/TiO2; to a certain extent (hydrogen post-treatment of Pt/TiO2 at 700 degrees C), the control step of oxygen electrode process (anodic oxidation or cathodic reduction) changes from oxygen diffusion to electrochemical oxygen adsorption or desorption, respectively. Increasing the amount of Pt supported on TiO2 enhances the processes of oxygen spillover and back spillover. (C) 1999 Elsevier Science B.V. All rights reserved.