237 resultados para Surface morphology
Resumo:
The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.
Resumo:
The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel morphology of TPBD crystals consisting of a three-dimensional interlaced network was obtained by casting the self-seeded 0.1% benzene solution onto carbon-boated mica. Both the transmission electron microscopy (TEM) and electron diffraction (ED) analyses showed that the network was composed of well-developed lamellae. It is imagined this interesting morphology is the results of asymmetrical growth of the original TPBD lamellae on the amorphous interface, and that their preferred orientation changed when they encountered each other.
Resumo:
Surfactant adsorption on metal surfaces has been used to limit the activity of the electrode surface and to stabilize colloidal clusters and nanoparticles in solution, but the adsorption and relative potential-induced structure change of the surfactant were not known. Here, the adsorption of sodium dodecyl sulfate (SDS) on a Au(111) surface under potential control was investigated by in situ scanning tunneling microscopy (STM). The STM images showed that the morphology of SDS on Au(111) was changed from a hemi-cylindrical micellar monolayer to a compact and uniform bilayer through control of the potential. The transition between the hemimicellar monolayer and the compact bilayer is not reversed after a period of time. The model of potential-induced transformation for SDS aggregates on Au(111) was established. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) was studied by optical microscopy, SEM, and TEM, respectively. It is interesting to find that the surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) is made up of the convex bands. The landscape of the convex bands on the surface has been little emphasized before. Radial fibrils are arranged on the bands. Details of the radial fibrils on the bands can be observed by TEM. The landscape of the convex bands on the surface and twisting of lamellae in the convex bands for PCL/SAN blends may be useful to explain the formation mechanism of the ring banded spherulites in polymer blends or even in homopolymers. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Novel morphology of ring-banded spherulites in the surface of poly(epsilon-caprolactone)/poly(styrene-co-acrylonitrile) (PCL/SAN) blends was discovered and studied by SEM and TEM. The ring-banded spherulites separate into those exhibiting a very dark contrast, of relatively regular bundles of lamellae and others appearing with a much brighter intensity, of a coarse and irregular aggregates of lamellae. The origin of the novel morphology is not due to different crystalline structures as in the case of isotactic polypropylene because only one crystal structure exists in PCL/SAN blends. The formation may reflect whether spherulites in PCL/SAN blends are nucleated at the bottom surface or at the top (free) surface.
Resumo:
The properties of the films formed in the electrolyte of PC/DME LiClO4 on two kinds of carbon materials were examined by cathodic polarization measurements. The result suggested that the films on both carbon electrodes have different morphology which resulted in the different cen performance of the two carbon anodes.
Resumo:
Mechanical properties and morphology of blends of polypropylene (PP) with high molecular weight polyethylene (HMWPE) prepared by coprecipitation from xylene solution are investigated. Compared to blends of PP with commercial high-density polyethylene (HDPE), the mechanical properties of the blends of PP/HMWPE are much superior to those of PP/HDPE blends. Not only is the tensile strength stronger, but also the elongation at break is much higher than that of the PP/HDPE blends of the same composition. These differences increase with increasing HMWPE and HDPE content. Scanning electron microscopy of the fracture surface resulting from the tensile tests shows that the compatibility in PP/HMWPE blends is much better than that in PP/HDPE blends. This is most likely attributable to the enhanced chain entanglement of HMWPE with the PP in the amorphous phase due to the lower crystallinity, owing to the high molecular weight of the HMWPE, and a much more flexible chain. The thermal behavior and spherulite morphology of both blends are also investigated.
Resumo:
Scanning electron microscopy (SEM) and an image analyser are used to study morphologies of the fractured surface, etched by hot phenol, of polypropylene/maleated polypropylene/polyamide 12 PP/PP-MA/PA12) = 65/10/25 blend and PP-MA/PA12 = 75/25 blend. The particle dimension and its distribution of PA12 dispersed phase in these blends are much lower and narrower than that of the PP/PA12. blends. Especially, most of the particles in the PP-MA/PA12 = 75/25 blend are smaller than 0.1 mu m. The effect of the morphology of PP/PA12 blends on their crystallization behaviour is studied using differential scanning calorimetry and SEM. PA12 dispersed phase coarsens during annealing in the PP/PP-MA/PA12 = 65/10/25 blend. The mechanism of coarsening of the PA12 dispersed phase is a coalescence process. The intense mixing between the PP component and the PA12 component through reaction of PP-MA and PA12 leads to a change of dynamic mechanical behaviour of the components. A separation method is used to separate the polyolefin parts (precipitated from hot phenol), from PA12 parts (hot phenol filtrate). Of PP/PP-MA/PA12 = 65/10/25 blend, infra-red measurements and elementary analysis show that the precipitate has a lower PA12 content than the feed, whereas the filtrate has a higher PA12 content. From PP-MA/PA12 = 75/25 blend, PA12 contents in the precipitate and the filtrate are the same as in the feed. This implies that all PA12 has reacted with all PP-MA in the latter case while not in the former case. Using the method of interface exposure, interfacial reaction of PP-MA with PA12 is studied by X-ray photoelectron spectrometry (X.p.s.). Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
XRD, TEM, SEM and EDS are employed to analyze smectites in the clay fraction of the surface sediments from the East Pacific. It is shown from the XRD results that the clay fraction consists of about 20% smectites. Three types of smectites are identified, Fe-rich (Type I), Fe, Mg-rich (Type II) and Na,Ca smectite (Type III), and most of them are not well-crystallized. Type I is widely distributed in sediments, showing honeycomblike in the SEM, and aggregated or dispersive hairlike, or cloudy assemblage with a bit curl near its edge in the TEM. This type is considered to be typomorphic type of authigenic smectite in the East Pacific. Type II is similar to Type I in micromorphology in the TEM, showing a transition micronite, while Type III is tabletlike in the TEM with an unclear edge. Type I may be altered from volcanics and some of them even precipitated from the low subthermal water. Type II could also be formed in the ocean floor, while Type III comes from dry and distant continental area. This study suggests that the characteristic of chemical composition and morphology of smectite may give a clue to understand sediment source, origin of minerals and sedimentation in the deep sea.
Resumo:
Mesoporous spinel membranes as ultrafiltration membranes were prepared through a novel sol-gel technique. By in situ modification of the sol particle surface during the sol-gel process, control of the material structure on a nanometer scale from the earliest stages of processing was realized. Nano-particles with a chocolate-nut-like morphology, i.e. spinel MgAl2O4 as a shell and gamma -Al2O3 as a core, were first revealed by HRTEM results. The formation of the spinel phase was confirmed by X-ray diffraction (XRD). N-2 adsorption-desorption results showed that the mesoporous membranes had a narrow pore size distribution. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The coadsorption of NO and O-2 on Ag(110) surface has been studied by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and in situ Raman spectroscopy. The existence of oxygen enhances the adsorption of NO by forming the NOx species, that is, NO2 and NO3, and the NO in turn as a promotor facilitates the cleavage of the dioxygen bond, forming the surface atomic oxygen species having the same spectral characteristics as those produced using oxygen at high pressure. The oxygen species generated by the interaction is composed of two parts. One is produced directly by the decomposition of surface NO-O-2 complex at ca 625 K, which raised an O 1s feature at 530.5 eV and is absent at ca 800 K, while the another with an O 1s binding energy of 529.2 eV emerges at higher temperatures and shows similar properties as the reported gamma-state oxygen which bound tightly on restructured silver surface. The exposure to NO and O-2 causes noticeable changes in the morphology of the Ag(110) surface and the flat terraces superseded by small (ca 0.1 mu m) pits, and particles with typical diameters of a few micrometres were formed at elevated temperatures. (C) 1999 Elsevier Science B.V. All rights reserved.