327 resultados para Pollen morphology
Resumo:
The silicon backbone conformation in poly(di-n-butylsilane) (PDBS) has been shown to be a 7/3 helix at ambient conditions, which is in marked contrast to the near-planar conformation of its homologous polymers with side chain lengths of one to three or six to eight carbon atoms. In this work, both the 7/3 helical and near-planar chain conformations are achieved by controlling the solvent evaporation rate around room temperature. The chain conformation and crystal structure obtained in this method have been correlated to the crystal morphology by wide-angle X-ray diffraction, transmission electron microscopy, electron diffraction, optical microscopy, atomic force microscopy, and UV absorption spectrum. The lath-shaped single crystals obtained at 12 degreesC correspond to an orthorhombic form with near-planar chain conformation whereas the lozenge-shaped single crystals obtained at 30 degreesC (in coexistence with the lath-shaped crystals) are orthohexagonal with a 7/3 helix.
Resumo:
The effects of the molecular weight of polystyrene (PS) component on the phase separation of PS/poly(4-vinylpyridine) (PS/P4VP) blend films on homogeneous alkanethiol self-assembled monolayer (SAM) and heterogeneous SAM/Au substrates have been investigated by means of atomic force microscopy (AFM). For the PS (22.4k)/P4VP (60k) system, owing to the molecular weight of PS component is relatively small, the well-aligned PS and P4VP stripes with good thermal stability are directed by the patterned SAM/Au surfaces. With the increase of the molecular weight of PS component (for the PS (582k)/P4VP (60k) system), the diffusion of P4VP is hindered by the high viscosity of PS during the fast spin-coating process. The phase separation behavior of PS/P4VP on the SAM/Au patterned substrates is similar to that on the homoueneous SAM and cannot be easily directed by the patterned SAM surfaces even though the characteristic length of the lateral domain morphology is commensurate with the stripe width.
Resumo:
We have studied the surface morphology of symmetric poly(styrene)-block-poly(methyl methacrylate) diblock copolymer thin films after solvent vapor treatment selective for poly(methyl methacrylate). Highly ordered nanoscale depressions or striped morphologies are obtained by varying the solvent annealing time. The resulting nanostructured films turn out to be sensitive to the surrounding medium, that is, their morphologies and surface properties can be reversibly switchable upon exposure to different block-selective solvents.
Resumo:
Vaterite-type YBO3:Eu3+ crystals with interesting flower and hedgehog fungus-like structures composed of nanosheets were obtained by controlled crystallization of Y2O3 and Eu2O3 in H3BO3 solutions under acidic hydrothermal (HT) conditions. Nanosheets of uniform thicknesses were formed by preferential crystal growth along the (100) crystallographic plane and specific three-dimensional structures were further developed through a homocentric growth mechanism. Optical emission measurements showed that the HT-grown nanosheet crystals exhibited a higher ratio of the emitted red-to-orange light ratio than crystals grown from solid-state reactions. The photoluminescence intensity and emission lifetimes were also studied as a function of the Eu3+ dopant concentration and the HT synthesis temperature. The effect of some additives: a chelating ligand, a surfactant and a polymer, on the YBO3:Eu3+ crystals morphology was also investigated.
Resumo:
Nanocomposites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and multi-walled carbon nanotubes (MWNTs) were prepared by solution processing. Ultrasonic energy was used to uniformly disperse MWNTs in solutions and to incorporate them into composites. Microscopic observation reveals that polymer-coated MWNTs dispersed homogenously in the PHBV matrix. The thermal properties and the crystallization behavior of the composites were characterized by thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction, the nucleant effect of MWNTs on the crystallization of PHBV was confirmed, and carbon nanotubes were found to enhanced the thermal stability of PHBV in nitrogen.
Resumo:
Poly(ethylene glycol) -poly(epsilon-caprolactone) diblock copolymers PEG-PCL were synthesized by ring-opening polymerization of c-caprolactone using monomethoxy poly(ethylene glycol) as the macroinitiator and calcium ammoniate as the catalyst. Obvious mutual influence between PEG and PCL crystallization was studied by altering the relative block length. Fixing the length of the PEG block (M-n = 5000) and increasing the length of the PCL block, the crystallization temperature of the PCL block rose gradually from I to about 35 degreesC while that of the PEG block dropped from 36 to -6.6 degreesC. Meanwhile, the melting temperature of the PCL block went up from 30 to 60 degreesC, while that of the PEG block declined from 60 to 41 degreesC. If the PCL block was longer than the PEG block, the former would crystallize first when cooling from a molten state and led to obviously imperfect crystallization of PEG and vice versa. And they both crystallized at the same temperature, if their weight fractions were equal. We found that the PEG block could still crystallize at -6.6 degreesC even when its weight fraction is only 14%. A unique morphology of concentric spherulites was observed for PEG5000-PCL5000.
Resumo:
Crystallization behavior, structural development and morphology evolution in a series of diblock copolymers Of poly(L-lactide)-blockpoly(ethylene glycol) (PLLA-b-PEG) were investigated via differential scanning calorimetry, wide-angle X-ray diffraction, polarized optical microscopy and atomic force microscopy. In these copolymers, both blocks are crystallizable and biocompatible. It was interesting that these PLLA-b-PEG diblock copolymers could form spherulites with banded textures, which was undercooling dependent. Single crystals with an abundance of screw dislocations were also observed via AFM. Such results indicated that these ringed spherulites and single crystals were formed during the crystallization of the PLLA blocks.
Resumo:
Binary CNBR/PP-g-GMA and ternary CNBR/PP/PP-g-GMA thermoplastic elastomers were prepared by reactive blending carboxy nitrile rubber (CNBR) powder with nanometer dimension and polypropylene functionalized with glycidyl methacrylate (PP-g-GMA). Morphology observation by using an atomic force microscope (AFM) and TEM revealed that the size of CNBR dispersed phase in CNBR/PP-g-GMA binary blends was much smaller than that of the corresponding CNBR/PP binary blends. Thermal behavior of CNBR/PP-g-GMA and CNBR/PP blends was studied by DSC. Comparing with the plain PP-g-GMA, T, of PP-g-GMA in CNBR/PP-g-GMA blends increased about 10degreesC. Both thermodynamic and kinetic effects would influence the crystallization behavior of PP-g-GMA in CNBR/PP-g-GMA blends. At a fixed content of CNBR, the apparent viscosity of the blending system increased with increasing the content of PP-g-GMA. FTIR spectrum verified that the improvement of miscibility of CNBR and PP-g-GMA was originated from the reaction between carboxy end groups of CNBR and epoxy groups of GMA grafted onto PP molecular chains. Comparing with CNBR/PP blends, the tensile strength, stress at 100% strain, and elongation at break of CNBR/PP-g-GMA blends were greatly improved.
Resumo:
The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymers, we have investigated the morphology of H-shaped ABC block copolymers (A(2)BC(2)) and compared them with those of the linear ABC block copolymers. By changing the ratios of the volume fractions of two A arms and two C arms, one can obtain block copolymers with different architectures ranging from linear block copolymer to H-shaped block copolymer. By systematically varying the volume fractions of block A, B, and C, the triangle phase diagrams of the H-shaped ABC block copolymer with equal interactions among the three species are constructed. In this study, we find four different morphologies ( lamellar phase ( LAM), hexagonal lattice phase ( HEX), core-shell hexagonal lattice phase (CSH), and two interpenetrating tetragonal lattice (TET2)). Furthermore, the order-order transitions driven by architectural change are discussed.
Resumo:
Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)(2), La(NO3)(3), etc. The possible growth mechanism of molybdenum trioxide prism-like particles is discussed on the basis of the presence of HI and the modification of metal cations. The as-prepared nanomaterials are characterized by means of powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and ultraviolet and visible spectroscopy (UV-vis). TEM and HRTEM micrographs show that the molybdenum trioxide nanobelts and prism-like particles have a relatively high degree of crystallinity and uniformity. BET specific surface areas of the as-prepared molybdenum trioxide nanocrystals are 67-79 m(2)g(-1). XPS analysis indicates that the hexavalent molybdenum is predominant in the nanocrystals. UV-vis spectra reveal that the direct band gap energy of the annealed molybdenum trioxide prism-like particles shows a pronounced blue shift compared to that of bulk MoO3 powder.
Resumo:
The crystallization behaviors of the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer with the PEG weight fraction of 0.50 (PEG(50)-PCL50) was studied by DSC, WAXD, SAXS, and FTIR. A superposed melting point at 58.5 degrees C and a superposed crystallization temperature at 35.4 degrees C were obtained from the DSC profiles running at 10 degrees C/min, whereas the temperature-dependent FTIR measurements during cooling from the melt at 0.2 degrees C/min showed that the PCL crystals formed starting at 48 degrees C while the PEG crystals started at 45 degrees C. The PEG and PCL blocks of the copolymer crystallized separately and formed alternating lamella regions according to the WAXD and SAXS results. The crystal growth of the diblock copolymer was observed by polarized optical microscope (POM). An interesting morphology of the concentric spherulites developed through a unique crystallization behavior. The concentric spherulites were analyzed by in situ microbeam FTIR, and it was determined that the morphologies of the inner and outer portions were mainly determined by the PCL and PEG spherulites, respectively. However, the compositions of the inner and outer portions were equal in the analysis by microbeam FTIR.