301 resultados para Plasmatic ureic nitrogen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modelling study is performed to compare the plasma °ow and heat transfer char- acteristics of low-power arc-heated thrusters (arcjets) for three di®erent propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equa- tions, which take into account the e®ects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, veloc- ity and Mach number distributions calculated within the thruster nozzle obtained with di®erent propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the °ow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appear- ing near the cathode tip; the °ow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant °ows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, speci¯c enthalpies and thermal conductivities, are di®erent, there are appreciable di®er- ences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest speci¯c impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arc root behavior affects the energy transfer and nozzle erosion in an arcjet thruster. To investigate the development of arc root attachment in 1 kW class N2 and H2-N2 arcjet thrusters from the time of ignition to the stably working condition, a kinetic series of end-on view images of the nozzle obtained by a high-speed video camera was analyzed. The addition of hydrogen leads to higher arc voltage levels and the determining factor for the mode of arc root attachment was found to be the nozzle temperature. At lower nozzle temperatures, constricted type attachment with unstable motions of the arc root was observed, while a fully diffused and stable arc root was observed at elevated nozzle temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2-kW-class chemical oxygen-iodine laser (COIL) using nitrogen buffer gas has been developed and tested since industrial applications of COIL devices will require the use of nitrogen as the buffer gas. The laser, with a gain length of 11.7 cm, is energized by a square pipe-array jet-type singlet oxygen generator (SPJSOG) and employs a nozzle bank with a designed Mach number of 2.5. The SPJSOG has advantages over the traditional plate-type JSOG in that it has less requirements on basic hydrogen peroxide (BHP) pump, and more important, it has much better operational stability. The SPJSOG without a cold trap and a gas-liquid separator could provide reliable operations for a total gas flow rate up to 450 mmol/s and with a low liquid driving pressure of around 0.7 atm or even lower. The nozzle bank was specially designed for a COIL using nitrogen as the buffer gas. The cavity was designed for a Mach number of 2.5, in order to provide a gas speed and static temperature in the cavity similar to that for a traditional COIL with helium buffer gas and a Mach 2 nozzle. An output power of 2.6 kW was obtained for a chlorine flow rate of 140 mmol/s, corresponding to a chemical efficiency of 20.4%. When the chlorine flow rate was reduced to 115 mmol/s, a higher chemical efficiency of 22.7% was attained. Measurements showed that the SPJSOG during normal operation could provide a singlet oxygen yield Y greater than or equal to 55%, a chlorine utilization U greater than or equal to 85%, and a relative water vapor concentration w = [H2O]/([O-2] + [Cl-2]) less than or equal to 0.1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Key Research and Development Program [2010CB833502]; National Natural Science Foundation of China [30600071, 40601097, 30590381]; Chinese Academy of Sciences [KZCX2-YW-432, O7V70080SZ, LENOM07LS-01]; GUCAS [O85101PM03]