244 resultados para Ondulations de membrane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/gamma-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm(2) min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/gamma-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91-93% and a H-2 selectivity of 95-97% have been achieved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, oxygen permeable membrane used in membrane reactor for selective oxidation of alkanes will be discussed in detail. The recent developments for the membrane materials will be presented, and the strategy for the selection of the membrane materials will be outlined. The main applications of oxygen permeable membrane in selective oxidation of light alkanes will be summarized, which includes partial oxidation of methane (POM) to syngas and partial oxidation of heptane (POH) to produce H-2, oxidative coupling of methane (OCM) to C-2, oxidative dehydrogenation of ethane (ODE) to ethylene and oxidative dehydrogenation of propane (ODP) to propylene. Achievements for the membrane material developments and selective oxidation of light alkanes in membrane reactor in our group are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel lower critical solution temperature (LCST) membrane forming system containing cellulose acetate (CA)/poly (vinyl pyrrolidone) (PVP 3 60K)/N-methyl-2-pyrrolidone (NMP)/1,2-propanediol with a weight ratio of 24.0:5.0:62.6:8.4 had been developed. CA hollow fiber ultrafiltration (UF) membranes were fabricated using the dry-wet spinning technique. The fibers were post-treated with a 200 mg/L hypochlorite solution over a period of 6 It at pH 7. The experimental results showed that water flux of a membrane decreased while retention increased with increasing CA concentration in a dope. It was concluded that the membrane pore size decreased with increasing CA concentration. The membrane fouling tendency for BSA was 3 times higher than that for PVP 24K. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A five-layer catalyst coated membrane (CCM) based upon Nation 115 membrane for direct methanol fuel cell (DMFC) was designed and fabricated by introducing a modified Nafion layer between the membrane and the catalyst layer. The properties of the CCM were determined by SEM, cyclic voltammetry, impedance spectroscopy, ruinous test and I-V curves. The characterizations show that the modified Nation layers provide increased interface contact area and enhanced interaction between the membrane and the catalyst layer. As a result, higher Pt utilization, lower contact resistance and superior durability of membrane electrode assembly was achieved. A 75% Pt utilization efficiency was obtained by using the novel CCM structure, whereas the conventional structure gave 60% efficiency. All these features greatly contribute to the increase in DMFC performance. The DMFC with new CCM structure presented a maximum power density of 260 MW cm(-2), but the DMFC with conventional structure gave only 200 mW cm(-2) under the same operation condition. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stainless-steel net is used to support a zeolite NaA membrane synthesized using a 'seeded-growth' method. The zeolite and stainless-steel net are tightly integrated (see Figure), showing large-scale order and high mechanical stability. High oxygen permeance and high permselectivity for O-2 over N-2 (about 7) is demonstrated.