350 resultados para OLEFIN-POLYMERIZATION
Resumo:
The morphology and mechanical properties of polypropylene/high-density polyethylene (PP/HDPE) blends in a wide range of compositions modified by a sequential Ziegler-Natta polymerization product (PP-PE) have been investigated. PP-PE contains multiple components such as PP, ethylene-propylene copolymer (EPC), and high molecular weight polyethylene (HMWPE). The effects of PP-PE on the mechanical properties and morphology of the PP/HDPE blends are the aggregative results of all its individual components. Addition of PP-PE to the blends not only improved the tensile strength of the blends, but the elongation at break increased linearly while the moduli were nearly unchanged. Morphological studies show that the adhesion between the two phases in all the blends of different compositions is enhanced and the dispersed domain sizes of the blends are reduced monotonously with the increment of the content of PP-PE. PP-PE has been demonstrated to be a more effective compatibilizer than EPC. Based on these results, it can be concluded that the tensile strength of the blends depends most on the adhesion between the two phases and the elongation at break depends most on the domain size of the dispersed component. (C) 1995 John Wiley & Sons, Inc.
Resumo:
Three new bimetallic complexes were synthesized and crystalized by reactions of (CF3CO2)(3)Ln With R(1) AlR(2)(Ln=Nd and Y, R(1)=H, R=i-C4H9; Ln=Eu, R=R(1)=C2H5) in tetrahydrofuran solution, and their crystal structures were determined using a X-ray diffraction method. The structures and the questions on valence state and noncoplanarity in the structures were confirmed and cracked by means of H-1 NMR and C-13 NMR spectra, especially by C-13-H-1 COSY 2D NMR technique. A general formula of molecules of the three rare earth complexes was defined as follows: [(mu-CF3CO2)(2)Ln(mu-CF3CHO2)AlR(2) . 2THF](2) A mechanism on the formation of the new complexes was also proposed through the following five steps: alkylating, beta-elimination (or hydrogenation), hydrogen transfer, linkage and association. Both Y-Al and Eu-Al complexes function as a catalyst in polymerization of MMA and ECH. The polymer obtained from the first monomer is mainly syndiotactic chain structure and the polymerization of the last monomer shows higher catalytic activity. The Y-Al complex also capable of ring-opening polymerization of THF in case of adding-vary small amount of ECH and a oxonium ion mechanism of THF polymerization was suggested from the analysis of THF polymer terminal.
Resumo:
The polymerization of acrylonitrile initiated by organolanthanide complexes alone is studied for the first time. The effect df polymerization conditions on catalytic activity of the title complex and molecular weight of the polymers produced have been studied.
Resumo:
The oxygen permselectivity of a poly[1-(trimethylsilyl)-1-propyne) (PTMSP) membrane was drastically improved by plasma polymerization of fluorine-containing monomers. The effects of such plasma polymerization conditions as deposition time, plasma power an
Resumo:
(eta(3)-C3H5)(2)CeCl5Mg2(tmed)(2) combined with HAl(i-Bu)(2) or Al(i-Bu)(3) can initiate the polymerization of isoprene with about 50% of the cis-1, 4 microstructure contained in the polymer. The insertion reaction of isoprene occurring between Ce3+ and e
Helix-induced asymmetric polymerization mediated by a living helical chain from chiral methacrylates
Resumo:
Poly(styrene-acrylic acid)-lanthanide (Ln.PSAA) and poly(ethylene-acrylic acid)-neodymium (NdPEAA) complexes have been prepared and characterized. The infrared and X-ray photoelectron spectra indicate that the lanthanide complexes possess the bidentate carboxylate structure Ln-O-C(R)-O (see structure B in text). The catalytic behavior of the complexes has been described. The catalytic activities of Nd.PSAA and Nd.PEAA are much greater than that of the corresponding low molecular weight catalyst for butadiene polymerization. The activities of various individual lanthanide elements are quite different from one another. Neodymium shows the highest activity. Europium, samarium and the heavy elements exhibit very low or no activities. The cis-1,4 content of the polybutadiene obtained is not affected by different lanthanide elements in the series. The complex with the intermediate content of the functional group has a higher activity than the others. The polymer-supported lanthanide complexes having different constitutions have different catalytic activities. When the molar ratio of lanthanide to the functional group is ca. 0.2, the activity of the complex is in the optimum state. The activity is influenced by the dispersion of the lanthanide metal immobilized on the polymer chain. Catalytic activity can be improved by adding other metals to the catalyst system.
Resumo:
Rare earth trifluoroacetates, Ln(CF3CO2)(3) (Ln = thirteen rare earth elements), combined with R(n)AlH(3-n) (R = methyl, octyl, n = 3; R = ethyl, i-Butyl, n = 2, 3) were used as catalysts for the polymerization of tetrahydrofuran (THF). The activity increased by adding propylene oxide (PO), as a promoter, to the polymerization system, producing high molecular weight polytetrahydrofuran (PTHF). The effects of Ln, PO/Ln, and Al/Ln, and others on the polymerization of THF were also studied. (C) 1993 John Wiley & Sons, Inc.
A NEW THERMOPLASTIC POLYIMIDE COMPOSITE PREPARED BY THE POLYMERIZATION OF MONOMER REACTANTS APPROACH
Resumo:
A novel amorphous thermoplastic polyimide (PTI) is being developed as a potential matrix resin for advanced composites. This paper describes the manufacture of the resin, prepreg, and processing of the composite. The chemical and physical behavior of the resin during the processing was determined by infrared spectroscopy and rheology. The influence of processing conditions on the composite properties was investigated. Mechanical properties of the unidirectional carbon fiber/PTI laminates were also presented.