276 resultados para Multilayer
Resumo:
A multilayer white organic light-emitting diode (OLED) with high efficiency was present. The luminescent layer was composed of a red dye 4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped into NN-bis-(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4-4-diamine (NPB) layer and a blue-emitting 9,10-bis-(beta-naphthyl)-anthrene (DNA) layer. Red and blue emission, respectively, from DCJTB:NPB and DNA can be obtained by effectively controlling the thicknesses of DCJTB:NPB and DNA layers, thus a stable white light emission was achieved. The device turned on at 3.5 V, and the maximum luminance reached 16000 cd/m(2) at 21 V. The maximum current efficiency and power efficiency were 13.6 cd/A and 5.5 lm/W, respectively.
Resumo:
Polyelectrolytes have been widely used as building blocks for the creation of thickness-controllable multilayer thin films in a layer-by-layer fashion, and also been used as flocculants or stabilizer of colloids. This paper reports novel finding that a kind of polyelectrolyte, polyamines, can facilely induce HAuCl4 to spontaneously form well-stabilized gold nanoparticles without the additional step of introducing a reducing reagent during the elevation of temperature, even at room temperature in some cases. The polymer chain-confined microenvironment and the acid-induced evolution of amide of such kind of polyelectrolyte solution play an important role in the nucleation and growth of gold nanoparticles. This method would not only be helpful to gain an insight into the formation of gold nanoparticles in polyelectrolyte systems, but also provide a novel and facile one-step polyelectrolyte-based synthetic route to polyelectrolyte protected gold nanoparticles in aqueous media for potential applications. More importantly, this strategy will be general to the preparation of other nanoparticles.
Resumo:
Tetrakis (N-methylpyridyl) porphyrinato] cobalt (CoTMPyP) and 1:12 silicotungstic acid (SiW12) were alternately deposited on a 4-aminobenzoic acid (4-ABA)-modified glassy carbon electrode through a layer-by-layer method. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV) and UV/vis absorption spectroscopy. We proved that the prepared multilayer films are uniform and stable. SiW12-containing multilayer films (SiW12 as the outermost layer) exhibit remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). The kinetic constants for HER were comparatively investigated at different layers Of SiW12/CoTMPyP multilayer film-modified electrodes by hydrogen evolution voltammetry. In addition, rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) voltammetric methods confirm that SiW12/CoTMPyP (CoTMPyP as the outermost layer) multilayer films catalyze almost a two-electron reduction of O-2 to H2O2 in pH 1-6 buffer solutions. Furthermore, P2W18/CoTMPyP films were also assembled, and their catalytic activity for HER is very different from that Of SiW12/CoTMPyP multilayer films.
Resumo:
Alternate layer-by-layer (L-by-L) polyion adsorption onto gold electrodes coated with chemisorbed cysteamine gave stable, electroactive multilayer films containing calf thymus double stranded DNA (CT ds-DNA) and myoglobin (Mb). Direct, quasi-reversible electron exchange between gold electrodes and proteins involved the Mb heme Fe2+/Fe3+ redox couple. The formation of L-by-L (DNA/Mb), films was characterized by both in situ surface plasmon resonance (SPR) monitoring and cyclic voltammetry (CV). The effective thickness of DNA and Mb monolayers in the (DNA/Mb)l bilayer were 1.0 +/- 0.1 and 2.5 +/- 0.1 mn, corresponding to the surface coverage of similar to65% and similar to89% of its full packed monolayer, respectively. A linear increase of film thickness with increasing number of layers was confirmed by SPR characterizations. At pH 5.5, the electroactive Mb in films are those closest to the electrode surface; additional protein layers did not communicate with the electrode. CV studies showed that electrical communication might occur through hopping conduction via the electrode/base pair/Mb channel, thanks to the DNA-Mb interaction. After the uptake of Zn2+, a special electrochemical behavior, where MbFe(2+) acts as a DNA-binding reduction catalyst in the Zn2+-DNA/Mb assembly, takes place.
Resumo:
A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.
Resumo:
The fabrication of multilayer microstructures, for example for organic field-effect transistors, using metal transfer printing (MTP) is demonstrated. The Figure shows a two-layer gold structure produced by MTP. Since MTP is a purely additive technique, in which mechanical adhesion acts as the patterning driving force, it is considered an attractive approach to reel-to-reel processing.
Resumo:
An efficient organic light-emitting device using a trivalent europium (Eu) complex Eu(Tmphen)(TTA)(3) (TTA=thenoyltrifluoroacetone, Tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) as the dopant emitter was fabricated. The devices were a multilayer structure of indium tin oxide/N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4,4-diamine (40 nm)/ Eu complex:4,4-N,N-dicarbazole-biphenyl (1%, 30 nm)/2,9-dimethyl,4,7-diphenyl-1,10phenanthroline (20 nm)/AlQ (30 nm)/LiF (1 nm)/Al (100 nm). A pure red light with a peak of 612 nm and a half bandwidth of 3 nm, which is the characteristic emission of trivalent europium ion, was observed. The devices show the maximum luminance up to 800 cd/m(2), an external quantum efficiency of 4.3%, current efficiency of 4.7 cd/A, and power efficiency of 1.6 lm/W. At the brightness of 100 cd/m(2), the quantum efficiency reaches 2.2% (2.3 cd/A).
Resumo:
(3-Aminopropyl)trimethoxysilane (APTMS)-supported gold colloid electrode was constructed by virtue of a recently developed solution-based self-assembly strategy. The preparing procedure of 3-mercaptopropionic acid (MPA)-bridged copper hexacyanoferrate (CuHCF) multilayers on a planar macroelectrode (Bharathi et al. Langmuir 2001, 17, 7468) was copied to the as-prepared colloid electrode. The optical spectra, atomic force microscopy, and electrochemistry demonstrate successful copy of the multilayer system on a macroelectrode to the as-prepared colloid electrode. Remarkably, it was found that multilayer growth is highly selective to the nanoscale sites where gold nanoparticles are immobilized, and multilayer growth does not take place on the sites without nanoparticles. Interestingly, a preliminary electrochemical investigation indicates that electrochemical properties of multilayers systems on the colloid electrode are different from their counterparts on a planar macroelectrode, which might be due to high curvature effects of the gold nanoparticles. This indicates a different motif of multilayers on the colloid electrode from that on a planar macroelectrode.
Resumo:
Size-controlled Ag3PW12O40 nanoparticles have been synthesized in situ in polyelectrolyte multilayer thin films via layer-by-layer self-assembly.
Resumo:
The combination of in situ surface plasmon resonance (SPR) with electrochemistry was used to investigate the electrochemical doping/dedoping processes of anions on a polyaniline (PAn)-modified electrode. Electrochemical SPR characteristics of the PAn film before and after doping/dedoping were revealed. The redox transformation between the insulating leucoemeraldine, and the conductive emeraldine, corresponding to the doping/dedoping of anion, can lead to very distinct changes in both the resonance minimum angle and the shape of SPR curve. This is ascribed to the swelling/shrinking effect, and the change of the PAn film in the imaginary part of the dielectric constant resulted from the transition of the film conductivity. In situ recording the time evolution of reflectance change at a fixed angle permits the continuous monitoring of the kinetic processes of doping/dedoping anions. The size and the charge of anions, the film thickness, as well as the concentration of anions are shown to strongly influence the rate of ingress/egress of anions. The time differential of SPR kinetic curves can be well applied in the detecting electroinactive anion by flow injection analysis. The approach has higher sensitivity and reproducibility compared with other kinetic measurements, such as those obtained by amperometry.
Resumo:
Through layer-by-layer method [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) and polyoxometalyte were alternately deposited on 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV), UV/visible absorption spectroscopy, and atomic force microscopy (AFM). It was proved that the multilayer films are uniform and stable. CoTMPyP-containing multilayer films exhibit remarkable electrocatalytic activity for the reduction of O-2. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry confirm that P2W18/CoTMPyP multilayer films can catalyze the four-electron almost reduction of O-2 to water in pH > 4.0 buffer solution, while SiW12/CoTMPyP multilayer films catalyze about two-electron reduction of O-2 to H2O2 in pH 1 - 6 buffer solutions. The kinetic constants for O-2 reduction were comparatively investigated at P2W18/CoTMPyP and SiW12/CoTMPyP multilayer films electrodes.
Resumo:
Tapping mode atomic force microscopy (AFM) was applied to study the adsorption behavior of methanol on mica, highly oriented pyrolytic graphite (HOPG) and indium-tin oxide (ITO) coated glass substrates. On mica and HOPG substrates surfaces, the thin films of methanol with bilayer and multilayer were observed, respectively. The formation of irregular islands of methanol was also found on HOPG surface. On ITO surface only aggregates and clusters of methanol molecules were formed. The influence of sample preparation on the adsorption was discussed.
Resumo:
An ultrathin composite film containing both polyoxometalate anion [PMo12O40](3-) ( PMo12) and a planar binuclear phthalocyanine, bi-CoPc, has been prepared by the electrostatic layer-by-layer self-assembly method. UV-vis measurements revealed regular film growth with each four-layer {PMo12/bi-CoPc/PSS/PAH} adsorption. The lm structure was characterized by small-angle X-ray reflectivity measurements, X-ray photoelectron spectra, and AFM images. The nanothick film shows a third-order nonlinear optical response of chi((3)) = 4.21 x 10(-12) esu. Experimental investigations also indicate that the combination of polyoxometalate anions [PMo12O40](3-) with the phthalocyanine bi-CoPc in multilayer films can enhance the third-order NLO susceptibility and modify the third-order NLO absorption of bi-CoPc.
Resumo:
Ultrathin multilayer films of poly(allylamine hydrochloride) (PAH) and a polyoxotungstoeuropate cluster K-13[Eu(SiW11O39)(2)] (Eu(SiW11)(2)) have been prepared by the layer-by-layer self-assembly method. The Eu(SiW11)(2)/PAH multilayer films have been characterized by X-ray photoelectron spectra and atomic force microscopy (AFM). UV-Vis measurements reveal regular film growth with each Eu(SiW11)(2) adsorption. The photoluminescent behavior of the film at room temperature was to show the characteristic Eu3+ emission pattern of D-5(o) --> F-7(J). The occurrence of photoluminescent activity confirms the potential for creating luminescent multilayers with polyoxometalates.
Resumo:
Through layer-by-layer assembly, a series of undecatungstozincates monosubstituted by first-row transition metals, ZnW11M(H2O)O-39(n-) (M=Cr, Mn, Fe, Co, Ni, Cu. or Zn) were first successfully immobilized on a 4-aminobenzoic acid modified glassy carbon electrode surface. The electrochemical behaviors of these polyoxometalates were investigated. They exhibit some special properties in the films different from those in homogeneous aqueous solution. The Cu-centered reaction mechanism in the ZnW11Cu multilayer film was described. The electrocatalytic behaviors of these multilayer film electrodes to the reduction of H2O2 and BrO3- were comparatively studied.