267 resultados para Molybdenum compounds
Resumo:
The migration mechanism of ionizable compounds in capillary electrochromatography (CEC) is more complicated than in high performance liquid chromatography (HPLC) due to the involvement of electrophoresis and the second chemical equilibrium. The separation mechanism of ionizable compounds in CEC has been studied theoretically. The electrochromatographic capacity factors of ions (k *) in CEC and in the pressurized CEC are derived by phenomenological approach. The influence of pH, voltage, pressure on k* is discussed. in addition, the k * of weak acid and weak base are derived based on acid-base equilibrium and the influence of pH on k * is studied theoretically.
Resumo:
With using short capillary column packed with porous and non-porous ODS stationary phases, high speed separation of 6 neutral aromatic compounds within 36 s by capillary electrochromatography (CEC) has been performed. Good reproducibility of the migration times for those solutes in high speed CEC was observed with RSD less than 1%. Both the linear velocity of EOF and the current linearly increases with the applied voltage, which means that the thermal effect by Joule heating was small. However, the capacity factor of solutes was found to decrease with the increase of the applied voltage, which was caused by the fact that about several seconds needed for the increase of voltage from 0 to applied value on a commercial CE instrument made larger contributions to the migration times of the early eluted compounds than those of lately eluted ones during high speed CEC, and voltage effect would increase with the higher applied voltage used. The linear relationship between the logarithm of capacity factor and the number of carbon for homologous compounds was observed, and positive value of slope means that the hydrophobicity of solutes is one of the main contribution factors to retention in high speed CEC packed with ODS stationary phases.
Resumo:
The conversion of n-C4H10 was undertaken on MoO3/HZSM-5 catalyst at 773-973K and the phases of molybdenum species were detected by XRD. The XRD results show that bulk MoO3 on HZSM-5 can be readily reduced by n-C4H10 to MoO2 at 773 K and MoO2 can be gradually carburized to molybdenum carbide above 813 K. The molybdenum carbide formed from the carburization of MoO2 with n-C4H10 below 893 K is alpha-MoC1-x with fcc-structure, while hcp-molybdenum carbide formed above 933 K. During the evolution of MoO3 to MoO2 (>773 K) or the carburization of MoO2 to molybdenum carbide (>813 K), deep oxidation, cracking and coke deposition are serious, in particular at higher reaction temperatures, these lead to the poor selectivity to aromatics. Aromatization of n-C4H10 can proceed catalytically on both Mo2C/HZSM-5 and MoO2/HZSM-5, the distribution of the products for the two catalysts is similar below 813 K, but the, activity for Mo2C/HZSM-5 is much higher than that for MoO2/HZSM-5. (C) 2002 Elsevier Science B.V. All rights reserved.