282 resultados para Modèle murin double transgénique(Tg)
Resumo:
A ternary supramolecular complex of [Ni(bipy)(2)(H2O)](4)(C8AS)center dot 17.6(H2O) (bipy=4,4'-dimethyl-2,2'-bipyridine and C8AS = p-sulfonatocalix[8]arene) has been synthesized by a hydrothermal method and characterized by FT-IR spectroscopy, TG-DTA analysis and single crystal X-ray diffraction. In the structure. the water-soluble p-sulfonatocalix[8]arene molecule adopts a double partial cone conformation and is coordinated by four nickel atoms each of which is bonded by two 4,4'-dimethyl-2,2'-bipyridine molecules and one water molecule at the same time. The tetranuclear Subunits are stacked into an extended 3D structure with 1D water-filled channels via hydrogen bonds and C-H center dot center dot center dot pi interactions.
Resumo:
Two supramolecular assemblies of p-sulfonato-calix[8]arene were stacked by some infinite 1D 'molecular capsule' chains in which the calixarenes adopt an unprecedented 1,2,3,4-alternate double cone conformation.
Resumo:
The efficient synthesis of (TMS)(2)-[7]helicene (rac-3) and double helicene, a D-2-symmetric dimer of 3,3'-bis(dithieno-[2,3-b:3',2'-d]thiophene) (rac-4) was developed. The crystal structures of 3 and 4 show both strong intermolecular pi-pi interactions and S center dot center dot center dot S interactions. UV/vis spectra reveal that both 3 and 4 show significant pi-electron delocalization.
Resumo:
The epsilon-caprolactam was used to block the isocyanate group to enhance the storage stability of allyl (3-isocyanate-4-tolyl) carbamate. The spectra of FTIR and NMR showed that blocked allyl (3-isocyanate-4-tolyl) carbamate (BTAI) possesses two chemical functions, an 1-olefin double bond and a blocked isocyanate group. The FTIR spectrum showed BTAI could regenerate isocyanate group at elevated temperature. DSC and TG/DTA indicated the minimal dissociation temperature was about 135 degrees C and the maximal dissociation rate appeared at 226 degrees C. Then the styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) was functionalized by BTAI via melt free radical grafting. The effect of temperature, monomer and initiator concentrations on the grafting degree and grafting efficiency was evaluated. The highest grafting degree was obtained at 200 degrees C. The grafting degree and grafting efficiency increased with the enhanced concentration of BTAI or initiator.
Resumo:
This paper described a double-chained cationic surfactant, didodecyldimethylammonium bromide (DDAB). for dynamic surface modification of poly(dimethylsiloxane) (PDMS) microchips to reduce the fluorescent dyes adsorption onto the microchannel. When DDAB with a high concentration was present as the dynamic modification reagent in the running and sample buffer, it not only reversed the direction of electroosmotic flow, but also efficiently suppressed fluorescent dyes pyronine Y (PY) or rhodamine 8 (RB) adsorption onto the chip surface. In addition, vesicles formed by DDAB in the buffer with higher surface charge density and electrophoretic mobility could provide wider migration window and potential for the separation of compounds with similar hydrophobicity. Factors affecting modification, such as pH and concentrations of the buffer, DDAB concentration in the buffer were investigated. Compared with commonly used single-chained cetyltrimethylammonium bromide, DDAB provided a better modification performance.
Resumo:
Gas bubble dynamic template, a new green and promising template, can be used to prepare nanostructured materials with different shapes from electrochemical deposition processes. Different morphological platinum nanomaterials have been synthesized by the replacement reaction of the deposited copper nanomaterials which were obtained under negative potential along with H-2 evolution (dynamic template) at a glassy carbon electrode. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical methods were adopted to characterize their structures and properties. The nanomaterials platinum exhibited excellent catalytic activity toward oxygen reduction. The results demonstrated that the strategy is a simple, cost-effective, and potent method to prepare platinum nanomaterials.
Resumo:
An efficient synthetic procedure for substituted 2,3,6,7tetrahydrothiopyrano [2,3-b] thiopyran-4,5 -diones by a double annulation strategy is described. The ring systems are made in good yields from readily available dialkenoylketene dithioacetals in the presence of either sodium sulfide nonahydrate/N,N-dimethylformamide (DMF) or a sodium hydride/DMF/amine system.
Resumo:
Bottom-contact organic thin-film transistors (BC OTFTs) based on inorganic/organic double gate insulators were demonstrated. The double gate insulators consisted of tantalum pentoxide (Ta2O5) with high dielectric constant (kappa) as the first gate insulator and octadecyltrichlorosilane (OTS) with low kappa as the second gate insulator. The devices have carrier mobilities larger than 10(-2) cm(2)/V s, on/off current ratio greater than 10(5), and the threshold voltage of -14 V, which is threefold larger field-effect mobility and an order of magnitude larger on/off current ratio than the OTFTs with a Ta2O5 gate insulator. The leakage current was decreased from 2.4x10(-6) to 7.4x10(-8) A due to the introduction of the OTS second dielectric layer. The results demonstrated that using inorganic/organic double insulator as the gate dielectric layer is an effective method to fabricate OTFTs with improved electric characteristics.
Resumo:
Polycrystalline Sr2FeMoO6 compounds with most vacancies at normal Fe sites were fabricated through Mo hole doping; its effect is similar to Fe3+ by our estimation. Sharp increase of magnetoconductance at low field was evidence of spin-polarized tunneling between the grains. The room temperature low-field magnetoresistivity at optimal doping x=0.03 is 8.5% in 3000 Oe and increases to 11.4% in 1 T associated with soft magnetic behaviors; furthermore it exhibits a ferromagnetic Curie temperature of 450 K, connected with hole doping effect. The improved magnetoresistivity behavior was related to Curie temperature.
Resumo:
Poly(propylene carbonate) (PPC) with number average molecular weight (M-n) higher than 200 kg/mol was prepared via the terpolymerization of carbon dioxide, propylene oxide and diepoxide using Y(CCl3OO)(3)-ZnEt2-glycerine coordination catalyst. When equimolar ZnEt2 and diepoxide were used, double propagation active species were generated in situ by nucleophilic attack of metal alkoxide on diepoxide, leading to PPC of doubled M-n value. The molecular weight of PPC has dramatic influence on its thermal and mechanical performances. PPC with M of 227 kg/mol showed modulus of 6900 MPa, while the modulus of PPC with M-n of 109 kg/mol was only 4300 MPa. Moreover, when M-n increased from 109 to 227 kg/mol, a 37 degrees C increase of the onset degradation temperature was observed.
Resumo:
Fibroblast growth factor-2 (FGF-2) is a multifunctional polypeptide that affects many cellular functions and phenomena. The wild-type recombinant human fibroblast growth factor rhFGF-2(W) and the mutant C78SC96S rhFGF-2(M) were expressed in Escherichia coli and their products were purified. The results by the means of fluorescence spectroscopy and CD spectrums, suggested that due to its decreased hydrophobicity rhFGF-2 is not deposited as an inclusion body. The mitogenic activity of the expressed rhFGF-2(M) on 3T3 fibroblasts was shown to be 10-fold more than the expressed rhFGF-2(W) of which the biological activity was a little less than that of the standard rhbFGF(W), indicating that the increased biological activity was due to the change of its secondary structure, dimerization and affinity binding to FGF receptor (FGFR).
Resumo:
The electrical, magnetic and transport properties of Zn doped polycrystalline samples of Sr2Fe1-xZnxMoO6 ( x = 0, 0.05, 0.15 and 0.25) with the double perovskite structure have been investigated. The subtle replacement of Fe3+ ions by Zn2+ ions facilitates the formation of a more ordered structure, while further substitution leads to disordered structure because of the presence of a striped phase. Analysis of the x-ray powder diffraction patterns based on Rietveld analysis indicates that the replacement of Fe3+ by Zn2+ ions favours the formation of Mo6+ ions. The spin-glass behaviour can be explained on the basis of the competition between the antiferromagnetic superexchange and the ferromagnetic double-exchange interaction. The low-field magnetoresistance was moderately enhanced at x = 0.05, and its origin was found to be the competition between the decrease of the concentration of the itinerant electrons and the weaker antiferromagnetic superexchange in the antiphase boundaries. An almost linear negative magnetoresistance in moderate field has been observed for x = 0.25. A possible double-exchange mechanism is proposed for elucidating the observations; it also suggests a coexistence of (Fe3+, Mo5+) and (Zn2+, Mo6+) valence pairs.