296 resultados para MICROVESSEL DENSITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic and magnetic properties of CaCu3Cr4O12 and CaCu3Cr2Sb2O12 are investigated by the use of the full-potential linearized augumented plane wave (FPLAPW) method. The calculated results indicate that CaCu3- Cr4O12 is a ferrimagnetic and half-metallic compound, in good agreement with previous theoretical studies. CaCu3- Cr2Sb2O12 is a ferrimagnetic semiconductor with a small gap of 0.136 eV. In both compounds, because Cr4+ 3d (d(2)) and Cr3+ 3d (d(3)) orbitals are less than half filled, the coupling between Cr-Cu is antiferromagnetic, whereas that between Cu-Cu and Cr-Cr is ferromagnetic. The total net spin moment is 5.0 and 3.0 mu(B) for CaCu3Cr4O12 and CaCu3Cr2Sb2O12, respectively. In CaCu3Cr4O12, the 3d electrons of Cr4+ are delocalized, which strengthens the Cr-Cr ferromagnetic coupling. For CaCu3Cr2Sb2O12, the doping of nonmagnetic ion Sb5+ reduces the Cr-Cr ferromagnetic coupling, and the half-filled Cr3+ t(2g) (t(2g)(3)) makes the chromium 3d electrons localized. In addition, the ordering arrangement of the octahedral chromium and antimony ions also prevents the delocalization of electrons. Hence, CaCu3Cr2Sb2O12 shows insulating behavior, in agreement with the experimental observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies and dipole moments of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the metal s, d and f orbitals and oxygen p orbitals. Contrary to the well known lanthanide contraction, the bond distance is not regular from LaO to LuO for both neutral and charged molecules. An obvious population at 5d orbital was observed through the lanthanide series. 4f electrons also participate the chemical bonding for CeO to NdO and TbO to TmO. For EuO, GdO, YbO and LuO, 4f electrons tend to be localized. The spin multiplicity is regular for neutral and charged molecules. The spin multiplicity of the charged molecules can be obtained by -1 (or +1 for TbO+, DyO+, YbO- and YbO+) compared with the corresponding neutral molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond distances, dissociation energies, ionization potentials and electron affinities of 4d transition metal monoxides from YO to CdO and their positive and negative ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, SVWN, MPW1PW91 and PBE1PBE. It was found that calculated properties are highly dependent on the functionals employed, especially for dissociation energy. For most neutral species, pure density functionals BLYP, BPW91 and BP86 have good performance in predicting dissociation energy than hybrid density functionals B3LYP, B3PW91 and B3P86. In addition, BLYP gives the largest bond distance compared with other density functional methods, while SVWN gives shortest bond distance, largest dissociation energy and electron affinity. For the ground state, the spin multiplicity of the charged species can be obtained by +/- 1 of their corresponding neutral species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials, and dissociation energies of the diatomic 5d transition metal (except La) monoxides and their positively and negatively charged ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, MPW1PW91, PBE1PBE, and SVWN. Our calculation shows that for each individual species, the calculated properties are quite sensitive to the method used. Compared with hybrid density functional method B3PW91 (B3P86), pure density functional method BPW91 (BP86) gives longer bond distance (lower vibrational frequency) from HfO to PtO for neutral species, HfO+ to IrO+ for cationic species, and HfO- to AuO- for anionic species. While for B3LYP and BLYP, the trend was observed for cationic species from HfO+ to IrO+ and anionic species from HfO- to AuO- (except TaO-), but not for neutrals. Pure density function methods BLYP, BPW91, and BP86 give larger dissociation energy compared with hybrid density functional methods B3LYP, B3PW91, and B3P86. SVWN in most cases gives the smallest bond distance, while BLYP gives the largest value. MPW1PW91 and PBE1PBE show the same performance in predicting the spectroscopic constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA)(3)phen (x):CBP/BCP/ ALQ/LiF/Al, where x is the weight percentage of Eu(TTA)3phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Forster energy transfer participates in EL process. At the current density of 10.0 and 80.0mA/ cm(2), 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Forster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Forster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Forster energy transfer compared with carrier trapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural evolution of high-density polyethylene subjected to uniaxial tensile deformation was investigated as a function of strain and after annealing at different temperatures using a scanning synchrotron small-angle X-ray scattering (SAXS) technique. The results confirm that in the course of tensile deformation intralamellar block slips were activated at small deformations followed by a stress-induced fragmentation and recrystallization process yielding thinner lamellae with their normal parallel to the stretching direction. The original sheared lamellae underwent severe internal deformation so that they were even less stable than the newly developed thinner lamellae. Accordingly, annealing results in a melting of the original crystallites even at moderate strains where the stress-induced fragmentation and recrystallization just sets in and generates a distinctly different form of lamellar stacks aligned along the drawing direction. It was found that the lamellae newly formed during stretching at moderate strains remain stable at lower temperature. Only at a very high annealing temperature of 120 degrees C can they be melted, leading to an isotropic distribution of the lamellar structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active site structure for NO decomposition carried out on perovskite-like oxides were discussed based on the N-2 yield measured from LaSrNi1-x,AlxO4 with different B-site cations and from La2-ySryCuO4 with different crystal phases. Results show that the active site contains two oxygen vacancies, two transition metals, and one lattice-oxygen, with the oxygen vacancy locating on the apex of MO6 octahedron, and the lattice oxygen locating between the two transition metals (i.e., M-O-M plane). Density functional theory (DFT) analysis to the structure shows that this new active site is the most active structure for NO adsorbing, and hence, for NO decomposition. The similar trend of the relative energies that are required for the formation of oxygen vacancies with f form (calculated from DFT), the amount of oxygen vacancies, and the activities (N-2 yield) certifies this result further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reactive type nonionic surfactant, monostearic acid monomaleic acid glycerol diester (MMGD) was synthesized in our laboratory. Grafting-copolymerization of linear low density polyethylene ( LLDPE) with MMGD was carried out by using beta ray irradiation in air in a twin-screw extruder. Evidence of the grafting of MMGD as well as its extent was determined by Fourier-transformed infrared (FT-IR) spectroscopy. The effects of monomer concentration, reaction temperature and screw run speed on degree of grafting were studied systematically. The thermal behavior of LLDPE-g-MMGD was investigated by using differential scanning calorimety ( DSC). Compared with neat LLDPE, the crystallization temperature ( Tc) of LLDPE-g-MMGD increased about 3 degrees C, and the melting enthalpy (Delta H-m) decreased with increase of MMGD content. It showed that the grafted MMGD monomer onto LLDPE acted as a nucleating agent. The tensile properties and light transmission of blown films were determined. Comparing with neat LLDPE film, no obvious changes could be found for the tensile strength, elongation at break and right angle tearing strength of LLDPE-g-MMGD film. The wettability is expressed by the water contact angle. With an increasing percentage of MMGD, the contact angles of water on film surface of LLDPE- g-MMGD decrease monotonically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel nonionic surfactant, glycerol monostearic acid monomaleic acid diester (GMMD) was synthesized in our laboratory. Grafting-copolymerization of linear low density polyethylene (LLDPE) with GMMD was carried out by using P-ray irradiation in a twin-screw extruder. Evidence of the grafting of GMMD, as well as its extent, was determined by FT-IR. The effects of monomer concentration, reaction temperature and screw run speed on degree of grafting were studied systematically. The thermal behavior of LLDPE-g-GMMD was investigated by using differential scanning calorimety (DSC). Compared with neat LLDPE, the crystallization temperature (T,) of LLDPE-g-GMMD increased about 3 degrees C, and the melting enthalpy (Delta H-m) decreased with increase of GMMD content. It showed that the arafted GMMD monomer onto LLDPE acted as a nucleating agent. The tensile properties and light transmission of blown films were determined. Comparing with neat LLDPE film, no obvious changes could be found for the tensile strength, elongation at break and right angle tearing strength of LLDPE-g-GMMD film. Accelerated dripping property of film samples was investigated. The dripping duration of LLDPE-g-GMMD film and commercial anti-fog dripping film at 60 degrees C were 52 days and 17 days, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium geometries, vibrational frequencies, and dissociation energies of the transition metal carbonyls MCO (M = Nb, Ta, Rh, Ir, Pd, Pt) were studied by use of diverse density functional methods B3LYP, BLYP, B3P86, B3PW91, BHLYP, BP86, and PBE1PBE. It was found that the ground electronic state is (6)Sigma(+) for NbCO and TaCO, (2)Sigma(+) for RhCO,(2)Delta for IrCO, and (1)Sigma(+) for PdCO and PtCO, in agreement with previous theoretical studies. The calculated properties are highly dependent on the functionals employed, in particular for the dissociation energy. For most of the molecules, the predicted bond distance is in agreement with experiments and previous theoretical results. BHLYP is the worst method in reproducing the experimental results compared with the other density functional methods for the title molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solid solution system of Al in WC, with the stoichiometry of (W1-xAlx)C (x = 0.10, 0.25, 0.50, 0.75, 0.86), has been synthesized by a solid-state reaction between W1-xAlx alloys and carbon at around 1673 K in vacuum. Environment scanning electron microscope, energy- dispersive analysis of X-ray, X-ray photoelectron spectroscopy, and inductively coupled plasma analyses are used to certify the formation of the products. The mechanism of the solid-state reaction is also discussed. (W1-xAlx)C is identified to crystallize in the hexagonal space group P6m2 (No. 187) and belongs to the WC structure type. The atoms of W and Al occupy the same lattice site (la site) in the cell of (W1-xAlx)C. The cell parameters for each specimen in the phase of W-AI-C are quite close to that of WC, while their densities are far lower than that of WC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and inexpensive method for forming a low-density polyethylene (LDPE) superhydrophobic surface by controlling the crystallization behavior of LDPE by adjusting the crystallization time and nucleation rate has been proposed. The resulting porous surface, with hierarchical micro- and nanostructures on the beautiful floral designs, has a water contact angle of 173.0degrees +/- 2.5degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium geometries, vibrational frequencies and dissociation energies of the second row transition metal dimers (from Y-2 to Cd-2 except Tc-2) ere studied by use of density functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, SVWN, MPW1PW91 and PBE1PBE. The accuracy DFT methods is found to be highly dependent on the functional employed, in particular for vibrational frequency and dissociation energy. In most cases, the predicted bond distance is in general agreement with experiment and previous theoretical results. For van der Waals dimer Cd-2, B3LYP and BLYP have excellent performance in predicting the bond distance. For Ag-2, all density functional methods used in this study perform well in producing the bond distance, vibrational frequency and dissociation energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium geometries, vibrational frequencies and dissociation energies of hafnium dimer and trimer were studied by density functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, mPW1PW91 and PBE1PBE. The results indicate that singlet is the ground state both for hafnium dimer and for trimer. For hafnium dimer, the calculated bond distance is less sensitive to the methods used. Except at BHLYP level, the calculated vibrational frequency is comparable to the experimental value. For hafnium trimer, equilateral triangle with D-3h symmetry is slightly favored compared with isosceles triangle with C-2v, symmetry except at BHLYP level. This conclusion is in agreement with experiment in which the ground state of Hf-3 is fluxional and low-spin or closed shell is preferred.