240 resultados para K de Ripley


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly active and selective K-Pd/MnOx-ZrO2-ZnO catalyst for the one-step synthesis of 2-pentanone from ethanol is described. The possible reaction pathways for ethanol reaction over K-Pd/MnOx-ZrO2-ZnO catalyst were investigated by means of TPSR, CO2- and NH3-TPD techniques. The reactions were performed in a fixed bed continuous flow reactor. Complete conversion with high selectivity for 2-pentanone, was observed under 370 similar to 390degreesC, 2 similar to 4 MPa, GHSV = 8000 similar to 10,000 h(-1) and LHSV < 1.25 h(-1) conditions. Ethanol reactions over K-Pd/MnOx-ZrO2-ZnO catalyst showed that the catalyst could catalyze dehydrogenation. aldol. dehydration and hydrogenation reactions. Both acidic and basic properties are found on the surface of K-Pd/MnOx-ZrO2-ZnO catalyst, whose multifunctionality with the combination of basic, acid and metal sites may be responsible for the efficiency of the K-PdMnOx-ZrO2-ZnO catalyst. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were established for the azeotropic mixture. A glass transition was observed at (111.9 +/- 1.1) K. The phase transitions took place at (179.26 +/- 0.77) and (269.69 +/- 0.14) K corresponding to the solid-liquid phase transitions of. n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was established, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.