273 resultados para Interstellar hydrogen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduction of hydrogen peroxide at a glassy carbon (GC) electrode modified with sigma-bonded pyrrole iron(III) octaethylporphyrin complex, (OEP)Fe(Pyr), was studied by cyclic voltammetry and a rotating disk electrode. In 0.1N NaOH solution, it is shown that such an (OEP)Fe(Pyr)/GC electrode has a significant catalytic activity towards hydrogen peroxide reduction (E(D) = -0.80 V, k = 0.066 cm s(-1)); however, the electrode stability is low. The deactivation is observed when the reaction charge (Q) is passing through the (OEP)Fe(Pyr)/GC disk electrode. A linear rotation scan method is applied to study the kinetic process by determining the disk electrochemical response (i(D)) to rotation rate (omega) at a definite disk potential (E(D)). Considering that the number of adsorbed electroreduced catalyst molecules (Red) varies according to the disk potential, a factor theta(= Gamma(Red)/(Gamma(Red) + Gamma(Ox))) is introduced to describe the electrode surface area fraction for electroreduced species. The obtained Koutecky-Levich equation is applicable whatever the potential is.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mediatorless H2O2 sensor based on coelectropolymerization of horse radish peroxidase (HRP) and o-phenylenediamine (o-PD) is described. The electrode responds to H2O2 in a few seconds and gives a current density of 73.3 nA 1 mu mol(-1) cm(-2) at -100 mV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of solid-state galvanic cell for detecting a small amount of hydrogen in air at room temperature is proposed. The sensor cell is a potentiometric cell using Ce0.95Ca0.05F2.95 as solid-state electrolyte. The cell exhibits good sensing properties to hydrogen in air at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid, alkali, heat-shock, KNO3 and control pretreatment methods applied to anaerobic sludge were evaluated for their ability to selectively enrich the marine hydrogen-producing mixed microflora. Seawater culture medium was used as the substrate. The hydrogen yield of pretreated microflora was higher than that of the un-pretreated control (P < 0.05). Among the pretreatment methods studied, heat-shock pretreatment yielded the greatest hydrogen production, which was 14.6 times that of the control. When the effect of initial pH on hydrogen production of heat-shock pretreated samples was studied, hydrogen was produced over the entire pH range (pH 4-10). The hydrogen yield peaked at initial pH 8 (79 mL/g sucrose) and then steadily decreased as the initial pH increased. Sucrose consumption was high at neutral initial pH. During the process of hydrogen production, pH decreased gradually, which indicated that the acquired microflora consisted of acidogenic bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 +/- 0.07 mol H-2/mol glucose (mean +/- S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 +/- 0.03 mol H-2/mol glucose, 0.17 +/- 0.01 mol H-2/mol glucose, 0.11 +/- 0.01 mol H-2/mol glucose and 0.20 +/- 0.04 mol H-2/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp., However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemical technique for the real-time detection of hydrogen peroxide (H2O2) was employed to describe respiratory burst activity (RBA) of phagocytes in plasma which can be used to evaluate the ability of immune system and disease resistance. The method is based upon the electric current changes, by redox reaction on platinum electrode of extracellular hydrogen peroxide (H2O2) released from phagocytes stimulated by the zymosan at 680 mV direct current (d.c.). Compared with the control, activation of respiratory burst by zymosan particles results in a high amperometric response, and a current peak was obtained during the whole monitoring process. The peak current was proved by addition Of Cu2+ and other controls, to be the result of intense release of H2O2 from phagocytes. The peak area was calculated and used to evaluate the quantity of effective H2O2, which represents the quantity of H2O2 beyond the clearance of related enzymes in plasma. According to Faraday's law, the phagocytes' ability of prawns to generate effective H2O2 was evaluated from 1.253 x 10(-14) mol/cell to 6.146 x 10(-14) mol/cell, and carp from 1.689 x 10(-15) Mol/Cell to 7.873 x 10(-1)5 mol/cell. This method is an acute and quick detection of extracellular effective H2O2 in plasma and reflects the capacity of phagocytes under natural conditions, which could be applied for selecting species and parents with high immunity for breeding in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new fermentative hydrogen-producing bacterium was isolated from mangrove sludge and identified as Pantoea agglomerans using light microscopic examination, Biolog test and 16S rRNA gene sequence analysis. The isolated bacterium, designated as P. agglomerans BH-18, is a new strain that has never been optimized as a potential hydrogen-producing bacterium. In this study, the culture conditions and the hydrogen-producing ability of P. agglomerans BH-18 were examined. The strain was a salt-tolerant facultative anaerobe with the initial optimum pH value at 8.0-9.0 and temperature at 30 degrees C on cell growth. During fermentation, hydrogen started to evolve when cell growth entered late-exponential phase and was mainly produced in the stationary phase. The strain was able to produce hydrogen over a wide range of initial pH from 5 to 10, with an optimum initial pH of 6. The level of hydrogen production was affected by the initial glucose concentration, and the optimum value was found to be 10 g glucose/l. The maximum hydrogen-producing yield (2246 ml/l) and overall hydrogen production rate (160 ml/l/h) were obtained at an initial glucose concentration of 10 g/l and an initial pH value of 7.2 in marine culture conditions. In particular, the level of hydrogen production was also affected by the salt concentration. Hydrogen production reached a higher level in fresh culture conditions than in marine ones. In marine conditions, hydrogen productivity was 108 ml/l/h at an initial glucose concentration of 20 g/l and pH value of 7.2, whereas, it increased by 27% in fresh conditions. In addition, this strain could produce hydrogen using glucose and many other carbon sources such as fructose, sucrose, sorbitol and so on. As a result, it is possible that P. agglomerans BH-18 is used for biohydrogen production and biological treatment of mariculture wastewater and marine organic waste. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Susceptibility to stress corrosion cracking of X56 steel and its relationship with hydrogen permeation behaviour in atmospheric environment containing H2S was investigated by hydrogen permeation tests at a slow strain rate. The results show that: the fracture strain decreases with the decrease of strain rate under the same experimental conditions; the fracture strain also decreases with the increase of H2S concentration under the same strain rate, and the increased concentration of H2S has no significant effect on the hydrogen permeation in the first wet, etc. dry cycle, however has lead to increased hydrogen permeation in the later cycles. The SEM images of the fractured surfaces show clear evidences of enhanced stress corrosion cracking susceptibility by H2S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the acceptance of the electrochemical rusting mechanism, oxygen reduction has been considered the main cathodic process, while H+ reduction has been overlooked for the past four decades because oxygen can be readily renewed due to the thin layer Of Solution film formed during atmospheric corrosion. This study shows that measurable hydrogen call be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles, and a clear correlation exists between the quantities of hydrogen permeated through iron sheet and weight loss. Results Suggest the intrinsic importance of H+ reduction that merits further investigation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen entry and permeation into iron were measured by an electrochemical method during atmospheric corrosion reaction. The hydrogen permeation was enhanced on passive films because the hydrogen adsorption increased by the hydrogen evolution mechanism which is different from that on a bear iron surface. The permeation rate during a wet and dry corrosion cycle showed a maximum in the drying process depending upon the surface pH and the corrosion potential. The pollutant such as Na2SO3 which decreases the pH and the corrosion potential causes an increase in the permeation rate. The mechanism of the change in the permeation rate during the wet and dry cycles is explained by the polarization diagram of the electrode covered by thin water layer. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rate of hydrogen permeation was measured under static as well as dynamic mechanical deformation conditions, Cylindrical tensile test specimens were used for the study and hydrogen permeation was measured electrochemically, It was observed that the hydrogen diffusivity decreased as plastic deformation increased for the static deformation experiments while elastic deformation had no significant effect on diffusivity but increased the steady state permeation flux, For the dynamic loading experiment, an elastic deformation increased the hydrogen permeation rate almost linearly. Onset of plastic deformation led a sudden decrease of permeation rate and the reduced rate was rapidly recovered when the plastic deformation ceased. These rapid changes in the permeation rates were explained that the absorbed hydrogen was trapped by dislocations and creation rate and density of dislocations changed drastically when plastic deformation started and stopped.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen permeation behaviours of high strength steel 35CrMo under different cyclic wet-dry conditions have been investigated by using Devanathan-Stachurski's technique. Four electrolytes were used: distilled water, seawater, seawater containing 1500 ppm H2S and seawater containing 0.03 mol L-1 SO2. The corrosion weight loss of 35CrMo in the wet-dry cycles was measured simultaneously. The experimental results show that hydrogen can be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles and the permeation current density during a wet-dry cycle showed a maximum during the drying process. The hydrogen permeation was obviously promoted by Cl- ions, H2S and SO2. The hydrogen permeation in the real marine atmosphere has also been investigated. There is a clear correlation between the amount of hydrogen permeated and the corrosion weight losses. Results show the importance of hydrogen permeation that merits further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen permeation of 16Mn steel under a cyclic wet-dry condition was investigated by Devanathan-Stachurski's electrolytic cell with a membrane covered on the exit side by a nickel layer and the weight loss was measured for each wet-dry cycle. The results show that hydrogen permeation current change with different atmospheric environment: distilled water, seawater, and seawater containing 100 ppm H2S. The results show that seawater can induce an increase in the hydrogen permeation current due to the hydrolyzation reaction. And after the increase, equilibrium is reached due to the equilibrium of hydrolyzation reaction effect and the block of the rust layer. On the other hand, H2S contamination also can induce an increase in the maximum hydrogen permeation current due to the hydrolyzation reaction. And H2S contamination delays the time that hydrogen permeation is detected because of the formation of the FeS(1-x) film. The FeS(1-x) film can block the absorption of hydrogen onto the specimen surface. The surface potential change and the pH change of the metal surface control the hydrogen permeation current. And a clear linear correlation exists between the quantities of hydrogen permeated through the 16Mn steel and the weight loss. Based on the linear correlation, we monitored the corrosion rate by monitoring the hydrogen permeation current by a sensor outside. Good coherences were shown between results in laboratory and outside.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was found that the corrosion rate of steel in the sea mud with sulfate-reducing bacteria (SRB) could be as high as 10 times of that in the sea mud without SRB. And the hydrogen permeation reaction would occur when metals were corroded. So it is necessary to investigate the effect of living SRB on hydrogen permeation in the sea mud. Cathodic potential was often added to metals in order to protect them. But hydrogen permeation could be affected by the cathodic potential. So it is also necessary to study the effect of cathodic potential on hydrogen permeation. In this paper, the hydrogen permeation actions of APT X56 steel in the sea mud with and without SRB at corrosion and cathodic potential were studied with an improved Devanathan-Stachurski's electrolytic cell. Experimental results showed that during the growth of SRB, the current density curve of hydrogen permeation was accordant with the growth curve of SRB. But the hydrogen permeation current density of APT X56 steel hardly changed in the sterilized sea mud. Compared with the hydrogen permeation current density of APT X56 steel in the sterilized sea mud, the hydrogen permeation of APT X56 steel in the sea mud could be accelerated by living SRB. Experimental results also showed that the hydrogen permeation current density increased rapidly when the cathodic potential was added to the three-electrode system of the cathodic cell, and then the hydrogen permeation current density could obtain a stable value slowly. So the cathodic potential added to the cathodic cell could accelerate hydrogen permeation.