238 resultados para Hybrid organic-inorganic mesoporous materials
Resumo:
Novel hole-transporting molecules containing 1,4-bis(carbazolyl)benzene as a central unit and different numbers of diphenylamine moieties as the peripheral groups have been synthesized and characterized. These compounds are thermally stable with high glass transition temperatures of 141-157 degreesC and exhibit chemically reversible redox processes. Their amorphous state stability and hole transport properties can be significantly improved by increasing the number of diphenylamine moieties in the outer part and by controlling the symmetry of the carbazole-based molecules. These compounds can be used as good hole-tran sporting materials for organic electroluminescent (EL) devices. The device performance based on tri- and tetra-substituted carbazole derivatives is comparable to that of a typical 4,4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (NPB)-based device.
Resumo:
Ceramic carbon materials were developed as new sorbents for solid-phase extraction of organic compounds using chlorpromazine as a representative. The macroporosity and heterogeneity of ceramic carbon materials allow extracting a large amount of chlorpromazine over a short time. Thus, the highly sensitive and selective determination of chlorpromazine in urine sample was achieved by differential pulse voltammograms after only 1-min extraction. The total analysis time was less than 3 min. In comparison with other electrochemical and electrochemi-luminescent methods following 1-min extraction, the proposed method improved sensitivity by about 2 and 1 order of magnitude, respectively. The fast extraction, diversity, and conductivity of ceramic carbon materials make them promising sorbents for various solid-phase extractions, such as solid-phase microextraction, thin-film microextraction, and electrochemically controlled solidphase extraction. The preliminary applications of ceramic carbon materials in chromatography were also studied.
Synthesis and characterization of functionalized mesoporous silica by aerosol-assisted self-assembly
Resumo:
An efficient, productive, and low-cost aerosol-assisted self-assembly process has been developed to produce organically modified mesoporous silica particles via a direct co-condensation of silicate species and organosilicates that contain nonhydrolyzable functional groups in the presence of templating surfactant molecules. Different surfactants including cetyltrimethylammonium bromide, nonionic surfactant Brij-56, and triblock copolymer P123 have been used as the structure-directing agents. The organosilanes used in this study include tridecafluoro-1, 1,2,2-tetrahydrooctyltriethoxysilane, methytriethoxysilane, vinyltrimethoxysilane, and 3-(trimethoxysilyl)propyl methacrylate. X-ray diffraction and transmission electron microscopy studies indicate the formation of particles with various mesostructures. Fourier transform infrared and solid-state nuclear magnetic resonance spectra confirm the organic ligands are covalently bound to the surface of the silica framework. The porosity, pore size, and surface area of the particles were characterized using nitrogen adsorption and desorption measurements.
Resumo:
Two series of highly soluble novel nitrogen- and sulfur-containing conjugated polymers were synthesized via an acid-induced self-polycondensation of functional monomers with methyl sulfinyl and aromatic groups. The well-defined structures of synthesized polymers were confirmed by their NMR and IR spectra. The highest occupied molecular orbital energy values for these materials, estimated by cyclic voltammetry, showed a broad range of values from about 5.0 to 5.2 eV used as hole-transport layers (HTL) in two-layer light-emitting diodes ITO/HTL/Alq(3)/Mg:Ag [ITO = indium tin oxide, and Alq(3) = tris(8-quinolinato) aluminum]. The typical turn-on voltage of these diodes was about 4-5 V. The maximum brightness of the device was about 3440 cd/m(2) at 20 V. The maximum efficiency was estimated to be 0.15 1m/W at 10 V.
Resumo:
A unique sol-gel enzyme electrode for inert organic solvents is developed that is based on the partition equilibrium of the substrate between water-organic solvent media and the enzyme membrane.
Resumo:
A hybrid material with a conductive organic network in an inorganic matrix has been prepared by in-situ hydrolysis/polycondensation of TEOS in an aqueous solution of a solubilized polyaniline. Due to intense hydrogen bonding (indicated by Si-29 NMR and FTIR) the conductive polymer is very well dispersed in the silica matrix. The Figure shows SEM images of a 46/54 wt.-% hybrid at two temperatures (left 20 degreesC, right 100 degreesC).
Resumo:
New kinds of hybrid materials containing covalently bonded Eu3+ (Tb3+) bipyridine complexes in a silica network have been prepared and their luminescence properties reported.
Resumo:
Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impregnation method. The obtained materials were characterized using X-ray diffraction (XRD), IR and diffuse reflectance spectroscopy and luminescence spectra. All the hybrid samples exhibited the characteristic emission bands of EU3+ under UV light excitation at room temperature, and the excitation spectra showed significant blue-shifts compared to the pure rare-earth complex. Although the red emission intensity in the modified hybrid was almost the half of the red emission intensity in the pure Eu-TTA complex at room temperature, the hybrid showed a much higher thermal stability due to the shielding character of the MCM-41 host.
Resumo:
A novel inorganic-organic hybrid material incorporating graphite powder and Keggin-type alpha -germanomolybdic acid (GeMo12) in methyltrimethoxysilane-based gels has been produced by the sol-gel technique and used to fabricate a chemically bulk-modified electrode. GeMo12 acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The GeMo12-modified graphite organosilicate composite electrode was characterized by cyclic and square-wave voltammetry. The modified electrode shows a high electrocatalytic activity toward the reduction of bromate, nitrite and hydrogen peroxide in acidic aqueous solution. In addition, the chemically-modified electrode has some distinct advantages over the traditional polyoxometalate-modified electrodes, such as long-term stability and especially repeatability of surface-renewal by simple mechanical polishing.
Resumo:
The inorganic/polymer hybrid films with good luminescent properties have been obtained by the sol - gel process via incorporating the polymer component doped with rare earth complexes. These films exhibit good toughness and transparency. Their fluorescence spectra and lifetimes indicate that they all have the characteristic luminescence of the central rare earth ions. The lifetimes of these films are longer than those of pure complexes. TEM have showed that the rare earth complexes are dispersed homogeneously in SiO2/PVB interpenetratiny networks, and the dispersed size is between 20 and 30 nn.
Resumo:
Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.
Resumo:
A novel sol-gel process for preparing oxides and mixed oxides sols from precipitation and peptization process is reported in this article. Inorganic salts are used as raw materials in this study. It is found that the amount of acid has great influence on the stability and particle diameter distribution of the precursor sols. Ultrasonic treatment is used to prepare alumina sol at room temperature. The result of Al-27 NMR shows that there exist Al-13(7+) species in the sol. By controlling the sol particles with narrow particle diameter distribution, alumina, titania and silica-alumina (SA) materials with narrow mesoporous distribution are formed by regular packing of sol particles during gelation without using any templates. The results also show that the structure and particle diameter distribution of precursor sol determine the final materials' texture.
Resumo:
Highly ordered mesoporous ethanesilica (MES) with 2D hexagonal structure was synthesized from 1,2-bis(trimethoxysilyl) ethane under neutral conditions for the first time. Divalent salts, such as NiCl2, MgCl2, ZnCl2, ZnSO4 and Zn(NO3)(2), were used to help the formation of the ordered mesostructure. The MES samples were characterized by powder X-ray diffraction, nitrogen sorption, transmission electron microscopy, FT-IR, C-13 and Si-29 solid-state NMR and thermal gravimetric analysis. A phase transition from a disordered wormhole-like structure to an ordered P6mm structure was observed upon the addition of inorganic salts. The pore size of the MES decreases from 4.7 to 3.9 nm with increasing content of the inorganic salts. Fluoride was also found to be important for the formation of ordered MES under neutral conditions.