304 resultados para Film aesthetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic wetting and electrowetting are explored using molecular dynamics simulations. The propagation of the precursor film (PF) is fast and obeys the power law with respect to time. Against the former studies, we find the PF is no slip and solidlike. As an important application of the PF, the electro-elasto-capillarity, which is a good candidate for drug delivery at the micro- or nanoscale, is simulated and realized for the first time. Our findings may be one of the answers to the Huh-Scriven paradox and expand our knowledge of dynamic wetting and electrowetting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A peeling model is proposed to analyze the peeling properties of bio-mimetic nano-films using the finite element method (FEM) and theoretical approach. The influences of the nano-film's adhesion length, thickness, elastic modulus, roughness and peeling angle on the peeling force were considered as well as the effect of the viscoelastic behavior. It has been found that the effective adhesion length, at which the peeling force attained maximum, was much smaller than the real length of nano-films; and the shear force dominated in the case of smaller peeling angles, whereas, the normal force dominated at larger peeling angles. The total peeling force decreased with an increasing peeling angle. Two limiting values of the peeling-off force can be found in the viscoelastic model, which corresponds to the smaller and larger loading rate cases. The effects of nano-film thickness and Young's modulus on peeling behaviors were also discussed. The results obtained are helpful for understanding the micro-adhesion mechanisms of biological systems, such as geckos. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of deposition layer position and number/density on local bending of a thin film are systematically investigated. Because the deposition layer interacts with the thin film at the interface and there is an offset between the thin film neutral surface and the interface, the deposition layer generates not only axial stress but also bending moment. The bending moment induces an instant out-of-plane deflection of the thin film, which may or may not cause the so-called local bending. The deposition layer is modeled as a local stressor, whose location and density are demonstrated to be vital to the occurrence of local bending. The thin film rests on a viscous layer, which is governed by the Navier-Stokes equation and behaves like an elastic foundation to exert transverse forces on the thin film. The unknown feature of the axial constraint force makes the governing equation highly nonlinear even for the small deflection case. The constraint force and film transverse deflection are solved iteratively through the governing equation and the displacement constraint equation of immovable edges. This research shows that in some special cases, the deposition density increase does not necessarily reduce the local bending. By comparing the thin film deflections of different deposition numbers and positions, we also present the guideline of strengthening or suppressing the local bending.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<正>Elasto-capillarity has drawn much of scientists' attention in the past several years.By inducing electric field into the droplet,the encapsulation and release procedure can be realized and we call it electro-elasto-capillarity(EEC).EEC offers a novel method for micro-scale actuation and self-assemble of moveable devices.It also provides a good candidate for the drug delivery at micro- or nanoscale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonmodal linear stability of a falling film over a porous inclined plane has been investigated. The base flow is driven by gravity. We use Darcy's law to describe the flow in the porous medium. A simplified one-sided model is used to describe the fluid flow. In this model, the influence of the porous layer on the flow in the film can be identified by a parameter beta. The instabilities of a falling film have traditionally been investigated by linearizing the governing equations and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In the present paper, we have studied the linear stability of three-dimensional disturbances using the nonmodal stability theory. Particular attentions are paid to the transient behavior rather than the long time behavior of eigenmodes predicted by traditional normal mode analysis. The transient behaviors of the response to external excitations and the response to initial conditions are studied by examining the pseudospectral structures and the energy growth function G(t) Before we study the nonmodal stability of the system, we extend the results of long-wave analysis in previous works by examining the linear stabilities for streamwise and spanwise disturbances. Results show that the critical conditions of both the surface mode and the shear mode instabilities are dependent on beta for streamwise disturbances. However, the spanwise disturbances have no unstable eigenvalue. 2010 American Institute of Physics. [doi:10.1063/1.3455503]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition process to film pool boiling in microgravity is studied experimentally aboard the Chinese recoverable satellite SJ-8. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Small, primary bubbles are formed and slid on the surface, which coalesce with each other to form a large coalesced bubble. Two ways are observed for the transition from nucleate to film boiling at different subcoolings. At high subcooling, the coalesced bubble with a smooth surface grows slowly. It is then difficult for the coalesced bubble to cover the whole heater surface, resulting in a special region of transition boiling in which nucleate boiling and local dry areas can coexist. In contrast, strong oscillation of the coalesced bubble surface at low subcooling may cause rewetting of local dry areas and activation of more nucleate sites, resulting in an abrupt transition to film boiling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linear spatio-temporal stability analysis is conducted for the ice growth under a falling water film along an inclined ice plane. The full system of linear stability equations is solved by using the Chebyshev collocation method. By plotting the boundary curve between the linear absolute and convective instabilities (AI/CI) of the ice mode in the parameter plane of the Reynolds number and incline angle, it is found that the linear absolute instability exists and occurs above a minimum Reynolds number and below a maximum inclined angle. Furthermore, by plotting the critical Reynolds number curves with respect to the inclined angle for the downstream and upstream branches, the convectively unstable region is determined and divided into three parts, one of which has both downstream and upstream convectively unstable wavepackets and the other two have only downstream or upstream convectively unstable wavepacket. Finally, the effect of the Stefan number and the thickness of the ice layer on the AI/CI boundary curve is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When water seeps upwards through a saturated soil layer, the soil layer may become instability and water films occur and develop. Water film serves as a natural sliding surface because of its very small friction. Accordingly, debris flow may happen. To investigate this phenomenon, a pseudo-three-phase media is presented first. Then discontinuity method is used to analyze the expansion velocity of water film. Finally, perturbation method is used to analyze the case that a water flow is forced to seep upwards through the soil layer while the movement of the skeleton may be neglected relative to that of water. The theoretical evolutions of pore pressure gradient, effective stress, water velocity, the porosity and the eroded fine grains are obtained. It can be seen clearly that with the erosion and re-deposited of fine grains, permeability at some positions in the soil layer becomes smaller and smaller and, the pore pressure gradient becomes bigger and bigger, while the effective stress becomes smaller and smaller. When the effective stress equals zero, e.f. liquefaction, the water film occurs. It is shown also that once a water film occurs, it will be expanded in a speed of (U)(t)/(1 - E >).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water film can serve as a sliding surface and cause landslides on gentle slopes. The development of "water film" in saturated sand is analyzed numerically and theoretically based on a quasi-three-phase model. It is shown that stable water films initiate and grow if the choking state (where the fluid velocity decreases to near zero) remains steady in a liquefied sand column. Discontinuity can occur in pore water velocity, grain velocity and pore pressure after the initiation of a water film. However, the discontinuity and water film can disappear once the choking state is changed. The key to the formation of water film is the choking in the sand column caused by eroded fine grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microenvironment of the aqueous core phase in the black soap film of cationic surfactant cetyltrimethylammonium bromide with the anionic dye Brilliant Yellow as spectral probe has been studied by UV-vis spectroscopy. Under neutral and basic conditions, the dye aggregates in the films exist as both the acid and base forms in contrast to a preference of the base form in the bulk solutions. The specific property of black soap film, that the intrinsic pH value of the aqueous core phase insensitively responds to pH changes of the bulk solution, is directly observed through UV-vis spectra.