263 resultados para Collision
Resumo:
Western Qinling, a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau, has very complicated history of geologic and tectonic evolution. Previous studies mainly focus on tectonics and petrology of volcanic rocks in the western Qinling. Therefore, little is known about the Cenozoic lithospheric mantle beneath the western Qinling. Mafic, ultramafic and/or alkaline volcanic rocks and their entrained mantle peridotitic xenoliths and xenocrysts are known as samples directly from the lithospheric mantle. Their petrological and geochemical characteristics can reflect the nature and deep processes of the lithospheric mantle. Cenozoic volcanic rocks in the western Qinling contain abundant mantle xenoliths and xenocrysts, which provide us an opportunity to probe the lithospheric mantle beneath this region and a new dimension to insight into geologic evolution. Cenozoic volcanic rocks (7-23 Ma) from the western Qinling are sparsely distributed in the Lixian-Dangchang-Xihe Counties, Gansu Province, China. Volcanic rocks contain plenty of mantle-derived xenoliths, including spinel lherzolites with subordinate wehrlite, dunite, olivine websterite, clinopyroxenite and garnet lherzolite, and few olivine, clinopyroxene and spinel xenocrysts. These peridotitic xenoliths show clear deformed textures and their major minerals show excellent orientation. Thus, these peridotites are typical deformed peridotites. Olivine xenocrysts have clearly-zoned textures. The peridotitic xenoliths can be divided into two groups based on their compositions, namely, the H-type and L-type. The H-type peridotites are characterized by high Fo (>90) in olivines in which fine-grained ones have higher Fo than the coarse grains, low CaO (<20 %) in clinopyroxenes, high Cr# (>40) in spinels and high equilibration temperatures. They may represent the refractory lithospheric mantle. In contrast, the L-type peridotites contain low Fo (<90) olivines (with lower Fo in fine-grained olivines), high CaO (>20 %) clinopyroxenes, low Cr# (<20) spinels and low equilibration temperatures. They experienced low degree of partial melting. The Cenozoic lithospheric mantle beneath the western Qinling was refractory in major element compositions based on the mineral compositions of xenoliths and xenocrysts and experienced complicated deep processes. The lithospheric mantle was modified by shear deformation due to the diapirism of asthenosphere and strong tectonic movements including the collision between North China Craton and Yangze Craton and the uplift of Tibetan Plateau, and then underwent metasomatism with a hydrous, Na, Ti and Cr enriched melt.
Resumo:
The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.
Resumo:
The Tien Shan is the most prominent intracontinental mountain belt on the earth. The active crustal deformation and earthquake activities provide an excellent place to study the continental geodynamics of intracontinental mountain belt. The studies of deep structures in crust and upper mantle are significantly meaningful for understanding the geological evolution and geodynamics of global intracontinental mountain belts. This dissertation focuses on the deep structures and geodynamics in the crust and upper mantle in the Tien Shan mountain belt. With the arrival time data from permanent and temporal seismic stations located in the western and central Tien Shan, using seismic travel time tomographic method, we inversed the P-wave velocity and Vp/Vs structures in the crust and uppermost mantle, the Pn and Sn velocities and Pn anisotropic structures in the uppermost mantle, and the P-wave velocity structures in the crust and mantle deep to 690km depth beneath the Tien Shan. The tomographic results suggest that the deep structures and geodynamics have significant impacts not only on the deformations and earthquake activities in the crust, but also on the mountain building, collision, and dynamics of the whole Tien Shan mountain belt. With the strongly collision and deformations in the crust, the 3-D P-wave velocity and Vp/Vs ratio structures are highly complex. The Pn and Sn velocities in the uppermost mantle beneath the Tien Shan, specially beneath the central Tien Shan, are significantly lower than the seismic wavespeed beneath geological stable regions. We infer that the hot upper mantle from the small-scale convection could elevate the temperature in the lower crust and uppermost mantle, and partially melt the materials in the lower crust. The observations of low P-wave and S-wave velocities, high Vp/Vs ratios near the Moho and the absences of earthquake activities in the lower crust are consistent with this inference. Based on teleseismic tomography images of the upper mantle beneath the Tien Shan, we infer that the lithosphere beneath the Tarim basin has subducted under the Tien Shan to depths as great as 500 km. The lithosphere beneath the Kazakh shield may have subducted to similar depths in the opposite direction, but the limited resolution of this data set makes this inference less certain. These images support the plate boundary model of converge for the Tien Shan, as the lithospheres to the north and south of the range both appear to behave as plates.
Resumo:
The Tianshan Mountains is located about 1000-2000 km north of the India-Asia suture and is the most outstanding topography in central Asia, with transmeridional length of nearly 2500 km, north-southern wideness of ~ 300-500 km, peaks exceeding 7000 m above sea level (asl.), and average altitude of over 4000 m asl. Much of the modern relief of the Tianshan Range is a result of contraction driven by the collision of the India subcontinent with the southern margin of Asia, which began in early Tertiary and continues today. Understanding where, when and how the deformation of the Tianshan Mountains occurred is essential to decipher the mechanism of intracontinental tectonics, the process of foreland basin evolution and mountain building, and the history of climate change in central Asia. In order to better constrain the Cenozoic building history of the Tianshan Mountains and the climate change in the southern margin of the Junggar Basin, we carried out multiple studies of magnetostratigraphy, sedimentology, and stable isotopes of paleosol carbonate at the Jingou River section, which is located at the Huoerguosi anticline, the westernest one of the second folds and thrust faults zone in the northern piedmont of the Tianshan Mountains. The Jingou River section with a thickness of about 4160 m is continuous in deposits according to the observed gradual change in sedimentary environments and can be divided into five formations: Anjihaihe, Shawan, Taxihe, Dushanzi and Xiyu in upward sequence. Characteristic remamences were isolated by progressive thermal demagnetization, generally between 300 and 680℃. A total of 1133 out of 1607 samples yielded well-defined ChRMs and were used to establish the magnetostratigraphic column of a 3270-m-thick section from the exposed base of the Anjihaihe Formation to the middle of the Xiyu Formation. Two vertebrate fossil sites and a good correlation with the CK95 geomagnetic polarity time scale suggest that the section was deposited from ~30.5 to ~4.6 Ma and the age of the top of the Xiyu formation is ~2.6 Ma based on an extrapolation of the sedimentation rates. A plot of magnetostratigraphic age vs. height at the Jingou River section shows that significant increases in sedimentation rates as well as notable changes in depositional environments occurred at ~26-22.5 Ma, ~13-11 Ma and ~7 Ma, which represent the initial uplift of the Tianshan Mountains and two subsequent rapid uplift events. In addition, changes in sedimentation rates display characteristic alternations between increases and decreases, which probably indicate that the uplift of the Tianshan Mountains was episodic. We discussed the history of C4 biomass and climatic conditions in the southern margin of the Junggur Basin using the stable carbon and oxygen isotope composition of paleosol carbonates from the Jingou River section during ~17.5-6.5 Ma. The δ13C values indicate that the proportion of C4 biomass was uniform and moderate (15-20 %) during the interval of ~17.5-6.5 Ma. We proposed three hypotheses for this pattern of C4 biomass: (1) counteraction of two opposed factors (global cooling since ~15 Ma and thereafter increased dry and seasonality in central Asia) controlling the growth of C4 grasses, (2) variability in abundance of C3 grasses relative to C3 trees and shrubs if vegetation had ever changed in ecosystems, and (3) the higher latitude of the studied region. The δ18O values show a stepwise negative trend since ~13 Ma which may be attributed to three factors: (1) the temperature decreasing gradually after the middle Miocene (~15 Ma), (2) the increasing contribution of the moistures carried by the polar air masses from the Arctic Ocean to precipitation, and (3) the gradual retreat westward and disappearance of the Paratethys Ocean. Among them, which one played a more important role will need further study of the paleoclimate in central Asia.
Resumo:
Granulites from Huangtuling in the North Dabie metamorphic core complex in eastern China preserve rare mineralogical and mineral chemical evidence for multistage metamorphism related to Paleoproterozoic metamorphic processes, Triassic continental subduction-collision and Cretaceous collapse of the Dabieshan Orogen. Six stages of metamorphism are established, based on detailed mineralogical and petrological studies: (I) amphibolite facies (6.3–7.0 kbar, 520–550 °C); (II) high-pressure/high-temperature granulite facies (12–15.5 kbar, 920–980 °C); (III) cooling and decompression (4.8–6.0 kbar, 630-700 °C); (IV) medium-pressure granulite facies (7.7–9.0 kbar, 690–790 °C); (V) low-pressure/high-temperature granulite facies (4.0–4.7 kbar, 860–920 °C); (VI) retrograde greenschist facies overprint (1–2 kbar, 340–370 °C). The P–T history derived in this study and existing geochronological data indicate that the Huangtuling granulite records two cycles of orogenic crustal thickening events. The earlier three stages of metamorphism define a clockwise P–T path, implying crustal thickening and thinning events, possibly related to the assembly and breakup of the Columbia Supercontinent ca. 2000 Ma. Stage IV metamorphism indicates another crustal thickening event, which is attributed to the Triassic subduction/collision between the Yangtze and Sino–Korean Cratons. The dry lower crustal granulite persisted metastable during the Triassic subduction/collision due to lack of hydrous fluid and deformation. Stage V metamorphism records the Cretaceous collapse of the Dabieshan Orogen,possibly due to asthenosphere upwelling or removal of the lithospheric mantle resulting in heating of the granulite and partial melting of the North Dabie metamorphic core complex. Comparison of the Huangtuling granulite in North Dabie and the high-pressure (HP)–ultrahigh-pressure (UHP) metamorphic rocks in South Dabie indicates that the subducted upper (South Dabie) and lower (North Dabie) continental crusts underwent contrasting tectonometamorphic evolution during continental subduction–collision and orogenic collapse. High-pressure granulites are generally characterized by the absence of orthopyroxene. However, the Huangtuling felsic granulite rarely preserves the high-pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K-feldspar + quartz. To investigate the effects of bulk rock composition on the stability of orthopyroxene-bearing, high-pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, we constructed a series of P–T–X pseudosections based on the melt-reintegrated composition of the Huangtuling felsic high-pressure granulite. Our calculations demonstrate that the orthopyroxene-bearing, high-pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. Our study also reveals that the XAl values in the residual felsic–metapelitic, high-pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene-bearing high-pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.
Resumo:
Late Mesozoic-Cenozoic volcanic rocks are well exposed in Lhasa Terrane, southern Tibet. This research attempts to apply 40Ar/39Ar geochronology, major, trace element and Sr-Nd-O isotopic geochemistry data to constrain the spatio-temporal variations, the composition of source, geodynamic setting. The results indicate that Lhasa Terrane mainly went through three tectonic-magmatic cycle: (1) Phase of Oceanic subduction (140-80Ma). Along with the subducting beneath the Eurasian Plate of Neo-Tethys slab, the oceanic sediment and/or the subducting slab released fluids/melts to metasomatize the subcontinental lithospheric mantle, and induced the mantle wedge partially melt and produced the calc-alkaline continental arc volcanic rocks; (2) Phase of continental-continental collision. Following the subducting of the Neo-Tethys slab, the Indian Plate collided with the Eurasian Plate dragged by the dense Neo-Tethys oceanic lithosphere. The oceanic lithosphere detached from continental lithosphere during roll-back and break-off and the asthenosphere upwelled. The resulting conducted thermal perturbation leads to the melting of the overriding mantle lithosphere and produced the syn-collisional magmatism: the Linzizong Formation and dykes; (3) Following by the detachment of the Tethys oceanic lithosphere, the Indian Lithosphere subducted northward by the drive from the expanding of Indian Ocean. The dense Indian continental lithospheric mantle (±the thickened lower crust) break off, disturb the asthenosphere, and lead to the melting of the overriding mantle lithosphere, which has been metasomatized by the melts/fluids from the subducting oceanic/continental lithosphere and the asthenosphere, and produced the rift-related ultrapotassic rocks.
Resumo:
Bayan Obo giant REE-Nb-Fe deposit in the northen margin of the North China Craton (NCC) is well known in the world for its abundant rare earth element resources. There is nearly one hundred year of studying history in substance component, chronology and geochemistry of the ore deposit, since the main ore body was found in 1927. However, there still exist remarkable divergences in genesis, mineralized age and material origin. Especially the REE enrichment mechanism leaves us a secret. Recent research shows that the Bayan Obo ore deposit likely resulted from the carbonatite magma activity, which is a favorable factor for REE accumulation. Based on the analysis of tectonic evolution history of north margin of NCC this thesis mainly discussed the formation background of cratonic margined rifts in Bayan Obo, and presented the analytical results of formation environment, intrusion age and deep origin of Proterozoic carbonatite magma. These research results can provide evidence for ore genesis. LA ICP-MS U-Pb dating on zircon shows that the Neoarchean basement was mainly composed of calc-alkaline TTG gneisses (2588±16Ma). The collision orogeny movement of the northen margin of the NCC between 2.0 Ga to 1.9 Ga brought the swarm of diorite-granodiotite magma (2023±16Ma) and intense regional metamorphism event (1906.3±7.7 Ma to 1892.7±6.7 Ma). In the sequent super continent break up background, intense metamorphic and deformed basement complex was uplifted to the surface suffered denudation, forming Mesoproterozoic Bayan Obo group in the contemporary continental margin rifts. The uplift of basement complex and formation of continental rifts were likely related with mantle plume activity. Evidence from petrological and geochemical data suggests that abundant alkaline-basic magma resulted from enhancement of continental breakup activity, that separated into carbonatite veins and mafic dykes by melt immiscibility mechanism, intruded in Bayan Obo margin rifts at the late stage of extension movement. Carbonatite veins can be divided into three main types by mineral composition: dolomite carbonatite, dolomite-calcite coexistent carbonatite and calcite carbonatite. Intrusion relationship between different types of carbonatite veins show that the calcite carbonatite veins were formed latter than the dolomite type as well as the coexistent type. Moreover, geochemical data also reveals successive and evolutive character between them. The content of REE increases together with the calcite minerals component. That is to say that REE gradually accumulated as the evolution of carbonatite magma. High precision Sm-Nd isochron data shows that the intrusion age of carbonatite veins was at 1319±48Ma. Moreover, the REE mineralization age in calcite carbonatite veins was around 1275±87Ma that is consistent with the intrusion age in error range. According to these data the abundant REE already existed in the carbonatite magma before intrusion and result in the earlier ore mineralization. The average age of mineralized dolomite was at 1353±100Ma, and the mineralization age of apatite in coarse grain dolomite was around 1329±150Ma. These data is consistent with carbonatite. Considering the coincident rare, trace element and isochron composition between them, it is presumed that mineralized dolomite was also the carbonatite intrusion and was the mainly factor for huge REE enrichment.
Resumo:
Eastern Himalayan Syntaxis (EHS) and its surroundings (eastern margin of Tibet) is one of the most complicated tectonic areas in the world. As the exhaust opening of the balanced materials of the Tibetan Plateau during the collision of Indan and Eurasian plates, the deep structure beneath EHS surrounding region is referred to as the key to the study of the dynamics of the plateau. EHS3D project, sponsored by NSFC, has been proposed to explore the deep electric features of the area. During the first stage of EHS3D(2006-2008), MT+LMT measurements have been conducted along two lines from Chayu to Qingshuihe (EHS3D-3) and Chayu to Ruoergai (EHS3D-2). This paper will discuss the MT models of EHS3D-3 line. By the data procrssing, including distortion analysis, Robust estimation and strike decomposition, rotated apparent resitivities and phases have been obtained for each station. Then conventional 2-D inversion algorithms (NLCG and RRI) were employed to produce 2-D models. The final preferred 2-D model suggests that the upper crust consists of resistive blocks while in mid-lower crust there are two extensive conductive bodies beneath Lhasa block and Qiangtang terrain respectively. Jinshajiang suture is a gradient belt and Bangong-Nujiang suture appear a conductive belt dipping to the north. . We concluded that the formation of the two conductive bodies attributed to the partial melt and fluids in the lower crust. The regional electric strike derived from decomposition analysis indicates that the crust and upper mantle move in different manners. The upper crust moves like slips of rigid blocks along major slip faults while the lower crust creeps as a flow in the conductive channels.
Resumo:
The central-south Tibet is a part of the products of the continental plate collision between Eurasia and India. To study the deep structure of the study area is significant for understanding the dynamics of the continental-continental collision. A 3-D density model matched well with the observations in the central-south Tibet was proposed in this study. In addition, this study has also used numerical simulation method to prove that Quasi-Love (QL) wave is deduced by anisotropy variation but not by lateral heterogeneity. Meanwhile, anisotropy variation in the upper mantle of the Qiangtang terrane and Lhasa terrane is detected by the QL waves observed in recorded seismograms. Based on the gravity modeling, some results are summarized as follows: 1) Under the constrain of geometrical structure detected by seismic data, a 3-D density model and Moho interface are proposed by gravity inversion of the central-south Tibet. 2) The fact that the lower crustal densities are smaller than 3.2 g/cm3, suggests absence of eclogite or partial eclogitization due to delamination under the central-south Tibet. 3) Seismicity will be strong or weak in the most negative Bouguer gravity anomaly. So there is no a certain relationship between seismicity and Bouguer gravity anomaly. 4) Crustal composition are determined after temperature-pressure calibration of seismic P wave velocity. The composition of lower crust might be one or a mixture of: 1. amphibolite and greenschist facies basalt beneath the Qiangtang terrane; 2. gabbro-norite-troctolite and mafic granulite beneath the Lhasa terrane. Because the composition of the middle crust cannot be well constrained by the above data set, the data set published by Rudnick & Fountain (1995) is used for comparison. It indicated the composition of the middle crust is granulite facies and might be pelitic gneisses.Granulite facies used to be interpreted as residues of partial melting, which coincidences with the previous study on partial melting middle crust. Amphibolite facies are thought to be produced after delamination, when underplating works in the rebound of the lower crust and lithospheric mantle. From the seismology study, I have made several followed conclusions: 1) Through the numerical simulation experiment of surface wave propagating in heterogeneity media, we can find that amplitude and polarization of surface wave only change a little when considering heterogeneity. Furthermore, it is proved that QL waves, generated by surface wave scattering, are caused by lateral variation of anisotropy but not by heterogeneity. 2) QL waves are utilized to determine the variation of uppermost mantle anisotropy of the Tibetan plateau. QL waves are identified from the seismograms of the selected paths recorded by the CAD station. The location of azimuth anisotropy gradient is estimated from the group velocities of Rayleigh wave, Love wave and QL wave. It suggests that south-north lateral variation of azimuthal anisotropy locates in Tanggula mountain, and east-west lateral variation in the north of Gandese mountain with 85°E longitude and near the Jinsha river fault with 85°E longitude.
Resumo:
The Beishan orogenic collage locates at the triple-joint among Xinjiang, Gansu, and Inner Mongolia Provinces, at which the Siberian, Tarim and North China plates join together. It also occupies the central segment of the southern Central Asian Orogenic Belt (CAOB). The main study area in the present suty focused on the southwest part of the Beishan Mountain, which can be subdivided into four units southernward, the Mazhongshan continental block, Huaniushan Arc, Liuyuan suture zone and Shibanshan-Daqishan Arc. 1. The Huaniushan Arc was formed by northernward dipping subduction from the Orcovician to Permian, in which volcanic rocks ranging from basic to acidic with island arc affinity were widely developed. The granitiod intrusions become smaller and younger southward, whichs indicates a southward rollback of slab. The granitiod intrusions are mainly composed of I type granites, and their geochemical compositions suggest that they have affinities of island arc settings. In the early Paleozoic(440Ma-390Ma). The Shibanshan-Daqishan Arc, however, were produced in the southernward dipping subduction system from Carboniferous to Permian. Volcanic rocks from basic to acidic rocks are typical calcic-alkaline rocks. The granitiod intrusions become smaller and younger northernward, indicating subdution with a northernward rollback. The granitiod intrusions mainly consist of I-type granites, of which geochemical data support they belong to island arc granite. 2. Two series of adakite intrusions and eruptive rocks have been discovered in the southern margin of the Huaniushan Island Arc. The older series formed during Silurian (441.7±2.5Ma) are gneiss granitoid. These adakite granites intruded the early Paleozoic Liuyuan accretionary complex, and have the same age as most of the granite intrusions in the Huanniushan Arc. Their geochemical compostions demonstrate that they were derived from partial melting of the subudcted oceanic slab. These characteristics indicate a young oceanic crust subduction in the early Paleozoic. The late stage adakites with compositons of dacites associate with Nb-enriched basalts, and island arc basalts and dacites. Their geochemistries demonstrate that the adakites are the products of subducted slab melts, whereas the Nb-enriched basalt is products of the mantle wedge which have metasomatized by adakite melts. Such a association indicates the existences of a young ocean slab subduction. 3. The Liuyuan suture zone is composed of late Paleozoic ophiolites and two series of accretionary complexes with age of early Paleozoic. The early Paleozoic accretionary complex extensively intruded by early Palozioc granites is composed of metamorphic clastics, marble, flysch, various metamorphic igneous rocks (ultramafic, mafic and dacite), and eclogite blocks, which are connected by faults. The original compositions of the rocks in this complex are highly varied, including MORB, E-MORB, arc rocks. Geochronological study indicates that they were formed during the Silurian (420.9±2.5Ma and 421.1±4.3Ma). Large-scale granitiods intruded in the accretionary complex suggest a fast growth effect at the south margin of the Huaniushan arc. During late Paleozoic, island arc were developed on this accretionary complex. The late Paleozoic ophiolite has an age of early Permian (285.7±2.2Ma), in which the rock assemblage includes ultra-mafic, gabbros, gabbros veins, massive basalts, pillow basalt, basaltic clastic breccias, and thin layer tuff, with chert on the top.These igneous rocks have both arc and MORB affinities, indicating their belonging to SSZ type ophiolite. Therefore, oceanic basins area were still existed in the Liuyuan area in the early Permian. 4. The mafic-ultramafic complexes are distributed along major faults, and composed of zoned cumulate rocks, in which peridotites are surrounded by pyroxenite, hornblendites, gabbros norite and diorite outward. They have island-arc affinities and are consistent with typical Alaska-type mafic-ultramafic complexes. The geochronological results indicate that they were formed in the early Permian. 5. The Liuyuan A-type granite were formed under post-collisional settings during the late Triassic (230.9±2.5Ma), indicating the persistence of orogenic process till the late Triassic in the study area. Geochronological results suggested that A-type granites become younger southward from the Wulungu A-type granite belt to Liuyuan A-type granite belt, which is in good agreement with the accretionary direction of the CAOB in this area, which indicate that the Liuyuan suture is the final sture of the Paleo-Asin Ocean. 6. Structural geological evidence demonstrate the W-E spreading of main tectonic terrenes. These terrenes had mainly underwent through S-N direction contraction and NE strike-faulting. The study area had experienced a S-N direction compression after the Permian, indicating a collisional event after the Permian. Based on the evidene from sedimentary geology, paleontology, and geomagnetism, our studies indicate that the orogenic process can be subdivided into five stages: (1) the pre-orogenic stage occurred before the Ordovicain; (2) the subduction orogenic stage occurred from the Orcovician to the Permian; (3) the collisional orogenic stage occurred from the late Permian to the late Triassic; (4) the post-collision stage occurred after the Triassic. The Liuyuan areas have a long and complex tectonic evolutional history, and the Liuyuan suture zone is one of the most important sutures. It is the finally suture zone of the paleo-Asian ocean in the Beishan area.
Resumo:
Eastern Tianshan area, a Paleozoic complex trench-arc-basin system, experienced multi-period sudbuction and collision in geological history. A large number of Early Permian mafic-ultramafic intrusions emplaced along deep faults in post-collision extension tectonic stage and hosted a series of magmatic Cu-Ni sulfide deposits. This paper sets newly-discovered Tianyu magmatic Cu-Ni sulfide deposit related to small intrusion as an example. On basis of the study of ore-forming mechanism of Cu-Ni deposit, we compared PGE content and discussed enrichment mechanism and regularity of mafic-ultramafic rocks and ores in Jueluotage tectonic belt and Central Tianshan Massif. PGE and Cu, Ni, S contents correlate with each other. PGE is mainly controlled by S content.Samilar PGE distribution patterns of mafic-ultramafic show that complex originated from the same parental magma; Pd/Ir and Ni/Cu ratios indicate that high-Mg basaltic magma and deep sulfide segregation happened during magma evolution process. PGE and Cu-Ni ores are enriched in liquid sulfide and only individual samples completely control by monosulfide solid solution. Comparison of all control factors, early segregation of sulfide and quality of supply of magma may be the key factors leading to the Eastern Tianshan magmatic copper-nickel sulfide deposits don’t reach PGE grade, but we do not rule out the possibility of occurrence continuous mafic-ultramafic rocks and PGE-rich layer in deep.
Resumo:
The South China craton was formed by the collision of the Yangtze and Cathaysia blocks during the Neoproterozoic Jiangnan orogeny (also termed as the Jingnin or Sibao orogeny in Chinese literature). Basement rocks within the Yangtze block consist mainly of Proterozoic sediments of the Lengjiaxi and Banxi Groups. U-Pb ages of detrital zircons obtained by the LA-ICP-MS dating technique imply that the deposition of the Lengjiaxi Group continued until the Neoproterozoic. The youngest detrital zircons suggest a maximum deposition age of ~830 Ma for the Lengjiaxi Group, consistent with the initiation time of the deposition of the overlying Banxi Group, likely indicating continuous deposition of these two groups and a short temporal hiatus (~10 Ma) between the Neoproterozoic sedimentary rocks distributed in the South China craton. Detrital zircons from both the Lengjiaxi and Banxi Groups have a wide range of εHf(t) values from -12 to 14.2 and a continuous Nd and Hf model age spectrum from ~820 Ma to 2200 Ma. Some grains have model ages ranging up to ca. 2.9-3.5 Ga, indicating that both juvenile mantle material and ancient crust provided sedimentary detritus. This is also consistent with the Nd isotopic signature of sedimentary rocks recorded in the Lengjiaxi Group, suggesting a back-arc tectonic setting. The Banxi Group has slightly enriched Nd isotopic signatures relative to the Lengjiaxi Group, implying a higher percentage of old continental material in the sedimentary source. Combined with previously published data, new results can help us to reconstruct the Neoproterozoic tectonic evolution of the South China craton. The age spectrum of detrital zircons and Nd-Hf isotopic composition suggests a two-stage collision: Between 1000 Ma to 870 Ma, a continental magmatic arc was build up along the eastern margin of the Yangtze block. Convergence led to continent-based back-arc extension, subsidence and formation of a back-arc basin. Detritus originating from arc-related magmatic and old basement rocks was transported into this back-arc basin resulting in formation of the Lengjiaxi Group and its equivalents. At around 870 Ma, a second (oceanic) arc was formed by extension of an inter-arc basin, subduction subsequently led to the first collision and the emplacement of the blueschist mélange. Accretion of the magmatic arc lasted until the closure of an oceanic basin between the Yangtze and Cathaysia blocks at about 830 Ma. Shortly after the collision, subsequent uplift, further extension of the former back-arc basin and post-collisional granitoid magmatism caused a tilting of the Lengjiaxi sediments. Between 830 Ma and 820 Ma, subsequent closure of the oceanic back-arc basin and formation of the Jiangnan orogen took place, leaving a regional unconformity above the Lengjiaxi Group. Above this unconformity the Banxi Group was immediately deposited during the post-tectonic stage.
Resumo:
A mafic-ultramafic complex belt well developed in Eastern Tianshan, Xinjiang, NW China, which contains a series of Cu-Ni sulfide deposits. This area is the important production basis for Cu-Ni deposits, including Tulargen deposit, Hulu deposit, Huangshan-Huangshandong deposit, Hulu deposit, Xiangshan deposit, Tianyu deposit, Chuanzhu deposit. In China, especially Eastern Tianshan, it is prevalent that large Cu-Ni deposits occurred in small intrusions, typically including Jinchuan, Kalatongke, et al., so the ore-forming mechanism and evaluation rule for those small intrusions are very meaningful and of universal significance. On the basis of the research to typical Cu-Ni deposits, ore-forming conditions and processes are summarized through which to evaluate the ore-bearing potential for barren intrusions and unexplored mafic-ultramafic intrusions. By the contrast, metallogenic rule and mechanism of ore genesis are concluded, and evaluation system is preliminarily set up on the basis of these conclusions. Quantitatively simulation for the composition of olivine is introduced for the first time in China to discuss the interaction between magma and sulfide, and a new method to calculate the Mg-Fe composition of primitive magma is developed. Interaction between magma and sulfide liquid is used to get the Ni content in sulfide liquid. Sulfur isotopic characteristics in sulfide minerals in country rocks and ores are used to judge crustal sulfur introduction, which is applied for the first time in China. Re-Os isotopic characteristics are related to the ore-forming process, to interpret the process of enrichment of chalcophile elements. On the basis of the evaluation system, Mati, Chuanzhu, Luodong, Xiadong, those intrusions are evaluated to their ore-bearing potential. According to the studies to typical Cu-Ni deposits, conduit-type ore-forming model is set up, and the characteristics of the model are concluded systematically. The evaluation system and conduit-type ore-forming model can be helpful to the evaluation of mafic-ultramafic intrusions in this and similar mafic-ultramafic intrusion belts. The studied typical deposits and mafic-ultramafic intrusion include Tulargen deposit, Hulu deposit, Huangshandong deposit, Chuanzhu deposit, Mati intrusion,Luodong intrusion, Xiadong intrusion, and others. Through studies, there are similar characteristics for Tulargen and Hulu deposits in magma origin, composition of primitive magma(MgO=12.5%, FeO=12% and MgO=11%, FeO=10.5% respectively), magma evolution, mechanism of sulfide segregation and conduit-type ore-forming process. By Re-Os isotopic system, the ore forming date of Tulargen deposit is 265.6±9.2Ma, which is consistent to regional metallogenic event, but little younger. The Mg-Fe composition of primitive magma of Baishiquan, Huangshandong area, Kalatongke is lower than that of Tulargen and Hulu deposit, showing common basalt composition. The Mg# value(Mg#=(Mg/Mg+Fe)increases gradually from Kalatongke to Baishiquan to Huangshan-Huangshandong East. Baishiquan intrusions show relatively higher crustal contamination by evidence of trace element, which indicates the lower magma original source, from depleted mantle to crust. One break is the discovery of komatiitic intrusion, Xiadong intrusion, which shows characteristics of highly magnesium (Max Fo=96). The primitive magma is calculated of MgO=28%,FeO=9%, belonging to komatiitic magma. Tectonic evolution of Eastern Tianshan is discussed. By the statistics of ore-forming data of porphyry copper deposits, magmatic sulfide Cu-Ni deposits, orogenic hydrothermal gold deposits, we believe that those deposits are the successive products of oceanic subduction, are and back-arc basin collision and post-orogenic extention. And Cu-Ni sulfide deposits and orogenic gold deposits occurred in the stage of post-orogenic extention. According to the conclusions, the conduit-type ore-forming mechanism of magmatic sulfide deposit is set up, and its characteristics and conditions are concluded as well. The conduit-type ore-forming system includes magma generation, sulfide segregation, enrichment of chalcophile elements, interaction of sulfide and magma, sulfide collection in limited space in magma conduit and bottom of the chamber, which make a whole ore-forming system.The ore-forming process of Cu-Ni sulfide deposits is concluded as three steps: 1. mantle derived magma rises upward to the middle-upper crust; 2. magma suffers crustal contamination of different degrees and assimilates crustal sulfur, which leads to sulfur saturation and sulfide segregation. Sulfide liquid interacts with magma and concentrates chalcophile elements; 3. enriched sulfide located in the conduit(Tulargen) or bottom of the chamber (Hulu). Depleted magma rises upward continuously to form barren complexes. For the practical cases, Tulargen deposit represents the feeding conduit, and Hulu deposit represents the bottom of the staging magma chamber. So the deeper of west of Tulargen and southwest of Hulu are the favorite locate for ore location. The evaluation for ore potential can be summarized as follows: (1) Olivine can be served as indicator for magma evolution and events of sulfide segregation; (2) Sulfur isotopic characteristics is an efficient method to judge sulfur origin for magmatic sulfide deposit; (3) Re-Os content of the ores can indicate interaction between sulfide and silicate magma and crustal contamination; (4) PGE mineralization is effected by degree of partial melting of mantle; (5) Cu/Zr is efficient parameter to judge sulfide segregation; (6) The effects of multiple magma fractionation and emplacement are important, for inverse order shows the destruction to previous solid lithofacies and orebodies. Mati, Chuanzhu, Xiadong, Luodong, mafic-ultramafic intrusions are evaluated using evaluation system above. Remarkable Ni depletion is found in olivine of Mati, and southwest of the intrusion can be hopeful location for ore location. Chuanzhu intrusion has remarkable evidence of sulfide segregation, but the intrusion represents the narrow feeder conduit, so the wide part of the conduit maybe the favorite location for sulfide to deposit. The ore potential of Luodong and Xiadong is not good. Both the intrusions show no Ni depletion in olivine, and there is no sulfide in country rocks, so no crustal sulfur is added into the magmatic system. For Sidingheishan, a very large intrusion, the phenomenon of sulfide segregation is found, but there are no favorite places for sulfide to deposit. So the Cu-Ni ore potential maybe not good, but PGE mineralization should be evaluated further.
Resumo:
Tethyan Himalayan Sequence (THS) is located at the frontier of the India-Asia collision zone, which can preserve critical information about collision. This paper reports detailed petrology, geochemistry, spinels electron microprobe data, and in situ U-Pb ages and Lu-Hf isotopic data on detrital zircons from the late Cretaceous to early Eocene strata in Gyantze and Gamba area, south Tibet that provide important constraints on the early tectonic evolution of the India-Asia collision. In Gyantze, the lithic arkose in Zongzhuo mélange is characterized by, SiO2 =80.4%, Al2O3=8.6%, Na2O=1.6%, K2O=1.1%, LaN/YbN=8.90, and εNd (0) =-10.27. Spinels compositions are characterized by low TiO2 (generally <0.1%) and a Cr number mainly between 70 and 80. The largest population of detrital zircons is within the 73-169Ma range with high εHf (t) and > 500 Ma with complex εHf (t) values. The lithic arkose in Rilang conglomerate is characterized by, SiO2 =56.5%, Al2O3=15.6%, Na2O=4.7%, K2O=0.6%, LaN/YbN=5.00-5.29, and εNd (0) =1.92. Spinels of 2006T98 display high TiO2 (generally >0.2%) and a Cr number mainly between 70 and 85, other spinels are characterized by low TiO2 (generally <0.2%) and a Cr number mainly between 60 and 90. The largest population of detrital zircons is within 90-146 Ma range with high εHf (t). The lithic arkose in Jiachala formation is characterized by, SiO2 =64.6%, Al2O3=12.1%, Na2O=1.9%, K2O=1.8%, LaN/YbN=7.73-9.13, and εNd (0) =-5.52~-8.43. Spinels in the Jiachala formation have low TiO2 (generally <0.2%) and a Cr number between 39 and 88. Detrital zircons have a wide range of age distribution of 82-3165Ma with complex εHf (t). In Gamba, The quartze sandstone in Jidula formation is characterized by, SiO2=97.4%, Al2O3=0.9%, Na2O=0.03%, K2O=0.18%, LaN/YbN=18.70-21.684, and εNd (0) between -13.1~-7.4. While the lithic arkose in Zhepure formation is characterized by, SiO2=68.4%, Al2O3=7.3%, Na2O=1.15%, K2O=0.52%, LaN/YbN=6.09-8.99, and εNd(0)=-5.8~-6.3. Based on our geochemical analysis, spinles electron microprobe data, U–Pb ages and Hf isotope data for detrital zircons of the late Cretaceous-Eocene strata in Gyantze and Gamba, southern Tibet, the following major conclusions can be drawn: 1. In Gyantze, the Zongzhuo mélange was mainly derived from accretionary prism/THS of continental slop and Gangdese arc. Rilang conglomerate was totally from Gangdese arc. The Jiachala formation was derived from THS, suture zone and Gangdese arc. 2. In Gamba, the Jidula formation was from India craton, while the Zhepure formation was derived from THS, suture zone and Gangdese arc. 3. The deposite of Zongzhuo mélange and Rilang conglomerate (73-55Ma) marks the collision between India and Asia. 4. Late Paleocene-Eocene tectonic evolution is consistent with foreland basin system.
Resumo:
The Eastern Himalayan Syntaxis (EHS) is one of the strongest deformation area along the Himalayan belt resulted from the collision between Indian plate and the Eurasian Plate since the 50~60Ma, and has sensitivity tracked and preserved the whole collisional processes. It should depend on the detail geological investigations to establish the deformational accommodate mode, and the uplift history, to elucidate the deep structure and the crust-mantle interaction of the Tibet Plateau of the EHS. The deep-seated (Main Mantle Thrusts) structures were exhumed in the EHS. The MMT juxtapose the Gangdese metamorphic basement and some relic of Gangdese mantle on the high Himalayan crystalline series. The Namjagbawa group which is 1200~1500Ma dated by U/Pb age of zircon and the Namla group which is 550Ma dated by U/Pb age of zircon is belong to High Himalayan crystalline series and Gangdese basement respectively. There is some ophiolitic relic along the MMT, such as metamorphic ocean mantle peridotite and metamorphic tholeiite of the upper part of ocean-crust. The metamorphic ocean mantle peridotites (spinel-orthopyroxene peridotite) show U type REE patterns. The ~(87)Sr/~(86)Sr ratios were, 0.709314~0.720788, and the ~(143)Nd/~(144)Nd ratios were 0.512073~0.512395, plotting in the forth quadrant on the ~(87)Sr/~(86)Sr-~(143)Nd/~(144)Nd isotope diagram. Some metamorphic basalt (garnet amphibolite) enclosures have been found in the HP garnet-kynite granulite. The garnet amphibolites can be divided two groups, the first group is deplete of LREE, and the second group is flat or rich LREE, and their ~(87)Sr/~(86)Sr, ~(143)Nd/~(144)Nd ratios were 0.70563~0.705381 and 0.512468~0.51263 respectively. Trace element and isotopic characteristics of the garnet amphibolites display that they formed in the E-MORB environment. Some phlogolite amphibole harzburgites, which exhibit extensive replacement by Phl, Amp, Tc and Dol etc, were exhumed along the MMT. The Phl-Amp harzburgites are rich in LREE and LILE, such as Rb, K etc, and depletes Eu (Eu~* = 0.36 ~ 0.68) and HFSE, such as Nb, Ta, Zr, Hf, P, Ti etc. The trace element indicate that the Phl-Amp harzburgites have island arc signature. Their ~(87)Sr/~(86)Sr are varied from 0.708912 to 0.879839, ~(143)Nd/~(144)Nd from 0.511993 to 0.512164, ε Nd from- 9.2 to - 12.6. Rb/Sr isochrone age of the phlogolite amphibole harzburgite shows the metasomatism took place at 41Ma, and the Amp ~(40)Ar/~(39)Ar cooling age indcate the Phl-Amp harzburgite raising at 16Ma. There is an intense crust shortening resulted from the thrust faults and folds in the Cayu block which is shortened more 120km than that of the Lasha block in 35~90Ma. With the NE corner of the India plate squash into the Gangdese arc, the sinistral Pai shear fault and the dextral Aniqiao shear fault on the both sides of the Great bent of Yalun Zangbu river come into active in 21~26Ma. On the other hand, the right-lateral Gongrigabu strike-slip faults come into activity at the same period, a lower age bound for the Gongrigabu strike-slip fault is estimated to be 23~24Ma from zircon of ion-probe U/Pb thermochronology. The Gongrigabu strike-slip faults connect with the Lhari strike-slip fault in the northwestern direction and with the Saganing strike-slip at the southeastern direction. Another important structure in the EHS is the Gangdese detachment fault system (GDS) which occurs between the sedimental cover and the metamorphic basement. The lower age of the GDS is to be 16Ma from the preliminary 40Ar/39Ar thermochronology of white mica. The GDS is thought to be related to the reverse of the subducted Indian crust and the fast uplift of the EHS. Structural and thermochronology investigation of the EHS suggest that the eastern Tibet and the western Yunnan rotated clockwise around the EHS in the period of 35~60Ma. Later, the large-scale strike-slip faults (RRD, Gaoligong and Saganing fault) prolongate into the EHS, and connect with the Guyu fault and Gongrigabu fault, which suggest that the Indianchia block escape along these faults. Two kind of magmatic rocks in the EHS have been investigated, one is the mantle-derived amphibole gabbro, dioposide diorite and amphibole diorite, another is crust origin biotit-garnet adamellite, biotit-garnet granodiorite and garnet-amphibole-biotite granite. The amphibole gabbro dioposite diorite and amphibole diorite are rich in LREE, and LILE, such as Ba, Rb, Th, K, Sr etc, depleted in HFSE, such as Nb, Ta, Zr, Hf, Ti etc. The ratio of ~(87)Sr/~(86)Sr are from 0.7044 to 0.7048, ~(143)Nd/~(144)Nd are from 0.5126 to 0.5127. The age of the mantle origin magamatic rocks, which result from the partial melt of the raising and decompression anthenosphere, is 8Ma by ~(40)Ar/~(39)Ar dating of amphibole from the diorite. The later crust origin biotite-garnet adamellite, biotite-garnet granodiorite and garnet-amphibole-biotite granite are characterized by aboudance in LREE, and strong depletion of Eu. The ratios of ~(87)Sr-~(86)Sr are from 0.795035 to 0.812028, ~(143)Nd/~(144)Nd from 0.51187 to 0.511901. The ~(40)Ar/~(39)Ar plateau age of the amphibole from the garnet-amphibole-biotite granite is 17.5±0.3Ma, and the isochrone age is 16.8±0.6Ma. Their geochemical characteristics show that the crust-derived magmatic rocks formed from partial melting of the lower curst in the post-collisional environment. A group of high-pressure kaynite-garnet granulites and enclave of high-pressure garnet-clinopyroxene grnulites and calc-silicate grnulites are outcroped along the MMT. The peak metamorphic condition of the high-pressure granulites yields T=800~960 ℃, P=1.4~1.8Gpa, corresponding the condition of 60km depth. The retrograde assemblages of the high-pressure grnulites occur at the condition of T=772.3~803.3 ℃, P=0.63~0.64Gpa. The age of the peak metamorphic assemblages are 45 ~ 69Ma indicated by the zircon U/Pb ion-plobe thermochronology, and the retrograde assemblage ages are 13~26Ma by U/Pb, ~(40)Ar/~(39)Ar thermochronology. The ITD paths of the high-pressure granulites show that they were generated during the tectonic thickening and more rapid tectonic exhumation caused by the subducting of the Indian plate and subsequent break-off of the subducted slab. A great deal of apatite, zircon and sphene fission-track ages, isotopic thermochronology of the rocks in the EHS show that its rapid raising processes of the EHS can be divided into three main periods. There are 35~60Ma, 13~25Ma, 0~3Ma. 3Ma is a turn in the course of raising in the EHS which is characterized by abruptly acceleration of uplifting. The uplift ratios are lower than 1mm .a~(-1) before 3Ma, and higher than 1mm .a~(-1) with a maximum ratio of 30mm .a~(-1) since 3Ma. The bottom (knick point) of the partial anneal belt is 3.8km above sea level in the EHS, and correspond to age of 3Ma determined by fission-track age of apatite. The average uplift ratio is about 1.4 mm .a~(-1) below the knick point. The EHS has raised 4.3km from the surface of 2.36km above sea level since 3Ma estimated by the fossil partial anneal belt of the EHS. We propose a two-stage subduction model (B+A model) basing on Structural, thermochronological, magmatical, metamorphic and geophysical investigations of the EHS. The first stage is the subduction of the Indian continental margin following after the subduction of the Tethys Ocean crust and subsequent collision with the Gangdese arc, and the second stage is the Indian crust injecting into the lower crust and upper mantle of the Tibet plateau. Slab break-off seems to be occurred between these two stages.