254 resultados para Changjiang (Yangtze River) estuary
Resumo:
本项研究以长江中下游地区的浅水湖泊(太湖、巢湖、龙感湖)为研究对象,碳、氮同位素为研究手段,结合210Pb和14C年代学,以及沉积物中TOC、TN、C/N比值、TP等多种地球化学参数,对近代沉积环境演化过程,沉积物有机质来源以及西太湖形成演化的古环境进行分析研究。通过研究,得到以下主要认识: 1. 太湖沉积物剖面上δ13Corg和C/N比值分布范围指示太湖沉积物的有机物质来源主要是水生藻类。竺山湾T3点基本没有陆源物质输入;梅梁湾T2点有部分陆源物质输入;湖心T4点沉积物有机质来源还可能是不同于梅梁湾和竺山湾的水生植物。沉积物的地球化学参数剖面指示太湖从1920s始,沉积环境受人为因素的影响而逐渐营养化。 2. 巢湖沉积物δ13Corg和δ15N的研究结果,不仅指示沉积物有机质来源主要是水生藻类,受城市污染和农业面源污染输入的一定影响,而且指示了在沉积历史上因为巢湖闸的建成,湖泊生产力和浮游植物物种也发生了改变,湖泊富营养化。 3. 龙感湖沉积物δ13Corg和δ15N的研究分析,表明湖泊有机沉积以自身有机物源为主,受陆源输入影响小。1960s围垦造成营养盐输入量的增加,因为草型湖泊这一特征有利于营养盐的积累,缓解水体的富营养化程度,龙感湖始终处于中营养程度。 4. 太湖、巢湖和龙感湖表层沉积物孔隙水中NO3-和SO42-含量的差异,主要受水域污染状况、底泥有机质的丰富情况、环境水动力条件的变化、泥沙沉积和再悬浮过程引起的元素累积和释放影响,也是藻型湖泊与草型湖泊生产力大小、有机质沉积通量以及微生物丰度和活性等差异的表征。 5. 沉积物表层吸附态NH4+-N含量,体现了水域环境受污染的严重程度是:龙感湖<巢湖<太湖梅梁湾。三个湖泊中底泥有机质丰度差异和生物参与的氨化作用差别都非常显著。三个湖泊的沉积物表层铵态氮的含量,均表明了沉积物表层向上覆水体可能具有潜在的铵态氮迁移趋势。 6. 太湖古环境分析研究中,竺山湾和梅梁湾沉积物剖面的粒度分析、δ13Corg、δ15N、TOC、TN、C/N比值和TP都随沉积深度,对应14C定年结果,指示了西太湖沉积演化历程的三个阶段及其有机质来源。6870~6670 a B.P.,研究区被咸水覆盖,有机质来源是典型的水体自生来源,在竺山湾有逐渐增加的C4植物的输入。6670~5140 a B.P.,可能形成瀉湖并出现沉积间断。5140 a B.P.至今,形成淡水湖泊,沉积有机质主要来自湖泊自生物源,存在沉积间断。 7. 长江中下游的浅水湖泊沉积物中的有机质来源主要以湖泊自生来源为主,因为水体初级生产力的升高受陆源物质输入增加的影响,流域内人类活动引起的陆源物质输入不容忽视。长江中下游湖泊的近代沉积环境演化过程因为近岸距离、水动力强度和发育不同的水生植物等因素存在区域性差异,导致湖泊富营养化的最大根源是人为因素的影响发生的环境演变。
Resumo:
N, P and SiO3-Si in the Changjiang mainstream and its major tributaries and lakes were investigated in the dry season from November to December, 1997, and in the flood season in August and October, 1998. An even distribution of SiO3-Si was found along the Changjiang River. However, the concentrations of total nitrogen, total dissolved nitrogen, dissolved inorganic nitrogen, nitrate and total phosphorus, total particulate phosphorus increased notably in the upper reaches, which reflected an increasing impact from human activities. Those concentrations in the middle and lower reaches of the Changjiang River were relatively constant. Dissolved N was the major form of N and the particulate P was the major form of P in the Changjiang River. The molar ratio of dissolved N to dissolved P was extremely high (192.5-317.5), while that of the particulate form was low (5.6-37.7). High N/P ratio reflected a significant input of anthropogenic N such as N from precipitation and N lost from water and soil etc. Dissolved N and P was in a quasi-equilibrium state in the process from precipitate to the river. In the turbid river water, light limitation, rather than P limitation, seemed more likely to be a controlling factor for the growth of phytoplankton. A positive linear correlationship between the concentration of dissolved N and the river's runoff was found, mainly in the upper reaches, which was related to the non-point sources of N. Over the past decades, N concentration has greatly increased, but the change of P concentration was not as significant as N. The nutrient fluxes of the Changjiang mainstream and tributaries were estimated, and the result showed that the nutrient fluxes were mainly controlled by the runoff, of which more than a half came from the tributaries. These investigations carried out before water storage of the Three Gorges Dam will supply a scientific base for studying the influences of the Three Gorges Dam on the ecology and environment of the Changjiang River and its estuary.
Resumo:
Both nitrate (NO (3) (-) ) and soluble reactive phosphate (PO (4) (3-) ) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s. Within the same period in the sea area, with surface salinity > 30, NO (3) (-) concentration has shown an obvious increase, PO (4) (3-) has not changed greatly and dissolved reactive silica (SiO (3) (2-) ) has deceased dramatically. An examination of the elemental ratio of NO (3) (-) to PO (4) (3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously. In comparison, the elemental ratio of dissolved inorganic nitrogen (DIN) to PO (4) (3-) in surface seawater, with salinity > 22, has shown a clearly increasing trend. Furthermore, an overall historical change of the SiO (3) (2-) :PO (4) (3-) ratio has undergone a reverse trend in this area. Based on the changes of SiO (3) (2-) :PO (4) (3-) and DIN:PO (4) (3-) ratios, we can conclude that an overall historical change of SiO (3) (2-) :DIN ratio has decreased in this area from the 1950-1960s to 2000s. The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results. A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made. The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005. Furthermore, the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period, while the abundance of dinoflagellates has increased dramatically, from 0.7% to 25.4%.
Distributions of dissolved rare earth elements during estuarine mixing at the Changjiang River mouth
Resumo:
A collection of 577 Coilia mystus was made during April 2006 and 2007 from China's Yangtze Estuary to estimate the age structure and growth patterns of the population. Examination of sectioned sagittal otoliths revealed a periodic straight/curved growth pattern. The straight zone was from April to November, and the curved zone from October to May, indicating annual periodicity. Annual periodicity was also verified by margin zone analysis. The shift from a curved-zone to the next straight-zone stanza was defined as an annulus. The fish from which the otoliths were taken were 0-5 years old. The von Bertalanffy growth function was fitted to standard length (LS)-at-age data as L-S = 215.16 (1 - e(-0.53(t+0.30))) (n = 577, r(2) = 0.81, p < 0.05). The mature females included five age classes, ages 1 and 2 accounting for 74.3% of the population. The mature males included fish aged 1 and 2, those at age 1 accounting for 86.4% of the population. Mean length was smaller, and annual growth less, for mature males than for females of comparable age. The study demonstrated that the Yangtze population of C. mystus consists of more age classes than previously thought and that the age structure of the population needs to be considered in management decisions.
Resumo:
Surface sediments and bivalves were collected from the Changjiang Estuary in December 2003 and November 2004, respectively. Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in these samples were measured with high-resolution chromatography (HRGC)/High Resolution Mass Spectrometer (HRMS). The concentrations of total PCDD/Fs and toxic equivalent (TEQ) were 169.83 +/- 119.63 and 0.81 +/- 0.36 pg/g dry weight (dw) in sediments, and 580.33 +/- 240.17 and 7.24 +/- 3.65 pg/g dw in bivalves. The homolog compositions of PCDD/Fs were similar among samples, the most abundant congener was octa-chlorinated dibenzo-p-dioxin (OCDD) and then octa-chlorinated dibenzofuran (OCDF) and 1,2,3,4,6,7,8-hepta-chlorinated dibenzo-p-dioxin (HOCDD). The herbicide pentachlorophenol (PCP) and sodium pentachlorophenol (Na-PCP) were proved the main source of PCDD/Fs in this area.
Resumo:
Poyang Lake (Poyang Hu) is located at the junction of the middle and lower reaches of the Yangtze (Changjiang) River, covering an area of 3283 km(2). As one of the few lakes that are still freely connected with the river, it plays an important role in the maintenance of the unique biota of the Yangtze floodplain ecosystem. To promote the conservation of Poyang Lake, an investigation of the macrobenthos in the lake itself and adjoining Yangtze mainstream was conducted in 1997-1999. Altogether 58 benthic taxa, including, 22 annelids, 8 mollusks, 26 arthropods, and 2 miscellaneous animals, were identified from quantitative samples. The benthic fauna shows a high diversity and a marine affinity. The standing crops of benthos in the lake were much higher than those in the river, being 659 individuals/m(2) and 187.3g/m(2) (wet mass) in the main lake, and 549 individuals/m(2) and 116.6 g/m(2) in the lake outlet, but only 129 individuals/m(2) and 0.4g/m(2) in the river. The dominant roup in the lake was Mollusca, comprising 63.4% of the total in density and 99.5% in biomass. An analysis of the functional feeding structure indicated that collector-filterers and scrapers were predominant in the lake, up to 42.2% and 24.7% in density and 70.2% and 29.2% in biomass, respectively, while shredders and collector-gatherers were relatively common in the river. The present study was restricted to the northern outlet and the northeast part of Poyang Lake. A scrutiny is required for the remaining areas.
Resumo:
Seston was studied during inundation in a seasonally flooded lake of Changjiang River system (Lake Chenhu, Hanyang, P.R. China). Particulate organic matter (POM), particulate inorganic matter (PIM), particulate organic carbon (POC) and particulate organic nitrogen (PON) concentrations were highest upon initial inflow of river water, as a result of the riverine transport of allochthonous seston into the lake, and during the initial draining phase, coinciding with the postflood development of phytoplankton biomass and accumulation of detritus from the decomposition of the inundated vegetation grown during the preceding period of exposure. However seston concentrations were lowest shortly after the termination of flood inflow, presumably due to sedimentation and river water dilution. Seston food quality, based on POM : PIM, C : N and Algal-AFDW : POM ratios, was higher during the early high water phase than during the filling and draining phases.
Resumo:
National Natural Science Foundation of China [40701021, 40625002, 40331013]; National Knowledge Innovation Program of Chinese Academy of Sciences [KZCX2-YW-315-2]
Resumo:
In order to examine the effectiveness of engineering protection against localized scour in front of the south groin-group of the Yangtze Estuary Waterway Improvement Project, Phase I, an undistorted physical model on a geometric scale of 1:250 is built in this study, covering two groins and their adacent estuarine areas. By use of rinsing fix-bed model as well as localized mobile-bed model the experiment is undertaken under bi-directional steady flow. According to the experimental results, waterway dredging leads to the increase in steram velocity, the increase being larger during the ebb than during the flood. Construction of the upstream groin has some influence on the flow patterns near the downstream groin. Localized scour in front of the groin-heads is controlled mainly by ebb flow. In the case of a riverbed composed entirely of silt, the depths of localized scour in front of the two groin-heads are 27 m and 29 m, respectively. In reality, the underneath sediment of the prototype riverbed is clay whose threshold velocity is much higher than the stream velocity in the Yangtze Estuary; therefore, the depths of localized scour will not be much larger than the thickness of the silt layer, i. e. 7.4 m and 4.7 m, respectively. The designed aprons covering the riverbed in fron of the groin-heads are very effective in scour control. Aprons of slightly smaller size can also fulfill the task of protection, but the area of localized scour increases significantly.
Resumo:
Ammonia-oxidizing archaea (AOA) have recently been found to be potentially important in nitrogen cycling in a variety of environments, such as terrestrial soils, wastewater treatment reactors, marine waters and sediments, and especially in estuaries, where high input of anthropogenic nitrogen is often experienced. The sedimentary AOA diversity, community structure and spatial distribution in the Changjiang Estuary and the adjacent East China Sea were studied. Multivariate statistical analysis indicated that the archaeal amoA genotype communities could be clustered according to sampling transects, and the station located in an estuarine mixing zone harboured a distinct AOA community. The distribution of AOA communities correlated significantly with the gradients of surface-water salinity and sediment sorting coefficient. The spatial distribution of putative soil-related AOA in certain sampling stations indicated a strong impact of the Changjiang freshwater discharge on the marine benthic microbial ecosystem. Besides freshwater, nutrients, organic matter and suspended particles, the Changjiang Diluted Water might also contribute to the transport of terrestrial archaea into the seawater and sediments along its flow path.
Resumo:
Based on the Estuarine, Coastal and Ocean Modeling System with Sediments (ECOMSED) model, a 3-D hydrodynamic-transport numerical model was established for the offshore area near the Yangtze Estuary in the East China Sea. The hydrodynamic module was driven by tide and wind. Sediment module included sediment resuspension, transport and deposition of cohesive and non-cohesive sediment. The settling of cohesive sediment in the water column was modeled as a function of aggregation (flocculation) and deposition. The numerical results were compared with observation data for August, 2006. It shows that the sediment concentration reduces gradually from the seashore to the offshore area. Numerical results of concentration time series in the observation stations show two peaks and two valleys, according with the observation data. It is mainly affected by tidal current. The suspended sediment concentration is related to the tidal current during a tidal cycle, and the maximum concentration appears 1 h-4 h after the current maximum velocity has reached.
Resumo:
This study was carried out in the Changjiang Estuary from 19 to 26 May 2003. Based on the data collected from 29 stations, including two anchor stations, phytoplankton taxonomic composition, abundance, diurnal variability and spatial distribution were examined. Eighty-seven species, including 54 species of diatoms and 16 red tide causative species, were identified. Average diversity index (H') and evenness (J) values were 1.04 and 0.40, respectively. A bloom in abundance of certain phytoplankton species, especially Prorocentrum dentatum and Skeletoneina costatum, was thought to be the cause of the low diversity index and evenness values. Total phytoplankton abundance averaged 6.75 x 10(5) cells 1(-1), and was much higher than previous investigation carried out in the same month in 1986. Abundance increased seaward showing a distinct spatial difference, and the dominant species varied with salinity. Correlation between phosphorus and abundance further supported the former conclusion that phosphorus is the controlling factor in phytoplankton growth in the Changjiang Estuary where light is not limiting. Based on the relationship between DO, pH and abundance, it is likely that the bloom was caused by rapid in situ growth of phytoplankton with high nutrients and sufficient light. The data also indicated that the duration of the bloom was not long and