326 resultados para Capillary Condensation
Resumo:
A new program to characterize polyethylene glycol-modified (PEGylated) proteins is outlined using capillary zone electrophoresis (CZE). PEGylated ribonuclease A and lysozyme were selected as examples. Five separation procedures were compared to select out the mixed buffer of acetonitrile-water (1:1, v/v) at pH 2.5 as the best to characterize the PEGylated proteins without sample pretreatment. Polyethylene oxide (PEO) with a high molecular mass of 8X10(6) was applied to rinse the capillary to form a dynamic coating which would decrease the undesirable proteins adsorbed to the inner wall of the silica. The electroosmotic flow (EOF) mobility of the five procedures was determined, respectively. It is found that acetonitrile is mainly responsible for the good resolution of PEGylated proteins with the help of PEO coating in the semi-aqueous system. The low EOF mobility and current in the semi-aqueous system might also have some responsibility for the high resolution. The semi-aqueous procedure described in this paper also demonstrates higher resolution of natural proteins than aqueous ones. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A continuous spatial temperature gradient was established in capillary electrophoresis by using a simple temperature control device. The temperature profile along the capillary was predicted by theoretical calculations. A nearly linear spatial temperature gradient was established and applied to DNA mutation detection. By spanning a wide temperature range, it was possible to perform simultaneous heteroduplex analysis for various mutation types that have different melting temperatures.
Resumo:
A novel method for the determination of N-acetylneuraminic acid (NANA) and N-glycolylneuraminic acid (NGNA) was developed by using high-performance capillary electrophoresis (HPCE) with UV detection at 195 nm. NANA and NGNA were separated directly and analyzed without pre- or postcolumn derivation. The detection limit of NANA is 9.6 x 10(-6) mol L-1 and for mass 3.879 x 10(-14) mol (39 fmol). This method was applied for the determination of NANA in 30 normal human and 72 cancer patients. The results demonstrated that NANA in the sera of cancer patients increased significantly as compared with the normal human (P < 0.001). The new method is simple and sensitive, and is suitable for basic research and clinical application to malignant tumors.
Resumo:
A theoretical description. based on chemical kinetics and electrochemistry, is given of DNA separation in dilute polymer solution by capillary electrophoresis. A self-consistent model was developed leading to predictions of the DNA electrophoretic velocity as a function of the experimental conditions - polymer concentration, temperature, and electric field strength. The effect of selected experimental variables is discussed. The phenomena discussed are illustrated for the example of 100 bp DNA ladder separation in dilute HPMC solution by capillary electrophoresis. This model is the first single model that can fully explain the dependence of DNA electrophoretic velocity on electrophoretic conditions.
Resumo:
Urinary 8-hydroxydeoxyguanosine (80HdG) has been considered as an excellent marker of individuals at high risk of developing cancer. Until now, urinary 80HdG has largely been measured by high-performance liquid chromatography with electrochemical detection. A new method for the analysis of urinary 80HdG by high-performance capillary electrophoresis has been developed and optimized in our laboratory. A single step solid-phase extraction procedure was optimized and used for extracting 80HdG from human urine. Separations were performed in an uncoated silica capillary (50 cm x 50 tm i.d.) using a P/ACE MDQ system with UV detection. The separation of 80HdG from interfering urinary matrix components is optimized with regard to pH, applied voltage, pressure injection time and concentration of SDS in running buffer. The detection limit of this method is 0.4 mug/ml, the linear range is 0.8-500 mug/ml, the correlation coefficients levels is better than 0.999. The developed method is simple, fast and good reproducibility, furthermore, it requires a very small injection volumes and low costs of analysis, which makes it possible to provide a new noninvasive assay for an indirect measurement of oxidative DNA damage.
Resumo:
Separation of the acidic compounds in the ion-exchange capillary electrochromatograph (IE-CEC) with strong anion-exchange packing as the stationary phase was studied. It was observed that the electroosmotic flow (EOF) in strong anion-exchange CEC moderately changed with increase of the eluent ionic strength and decrease of the eluent pH, but the acetonitrile concentration in the eluent had almost no effect on the EOF. The EOF in Strong anion-exchange CEC with eluent of low pH value was much larger than that in RP-CEC with Spherisorb-ODS as the stationary phase. The retention of acidic compounds on the strong anion-exchange packing was relatively weak due to only partial ionization of them, and both chromatographic and electrophoretic processes contributed to separation. It was observed that the retention values of acidic compounds decreased with the increase of phosphate buffer and acetonitrile concentration in the eluent as well as the decrease of the applied voltage, and even the acidic compounds could elute before the void time. These factors also made an important contribution to the separation selectivity for tested acidic compounds, which could be separated rapidly with high column efficiency of more than 220 000 plates/m under the optimized separation conditions. (C) 2000 Elsevier Science BN. All rights reserved.
Resumo:
Separation of small peptides on ion-exchange capillary electrochromatography (IE-CEC) with strong cation-exchange packing (SCX) as stationary phase was investigated. It was observed that the number of theoretical plates for small peptides varied from 240 000 to 460 000/m, and the relative standard deviation for t(0) and the migration time of peptides were less than 0.57% and 0.27%, respectively for ten consecutive runs. Unusually high column efficiency has been explained by the capillary electrophoretic stacking and chromatofocusing phenomena during the injection and separation of positively charged peptides. The sample buffer concentration had a marked effect on the column efficiency and peak area of the retained peptides. The influences of the buffer concentration and pH value as well as the applied voltage on the separation were investigated. It has been shown that the electrostatic interaction between the positively charged peptides and the SCX stationary phase played a very important role in IE-CEC, which provided the different separation selectivity from those in the capillary electrophoresis and reversed-phase liquid chromatography. A fast separation of ten peptides in less than 3.5 min on IE-CEC by adoption of the highly applied voltage was demonstrated. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.