286 resultados para Adsorption isotherm
Resumo:
The inhibiting effect and mechanism of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylicacid(ciprofloxacin), 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (norfloxacin) and (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7 H-pyrido(1,2,3-de)-1,4-benzoxazine-6 carboxylic acid (ofloxacin) on the corrosion of mild steel in 1 mol/L HCl have been studied using electrochemical method, quantum chemical method and SEM at 303 K. The potentiodynamic results showed that these compounds suppressed both cathodic and anodic processes of mild steel corrosion in 1 mol/L HCl. The impedance spectroscopy showed that R-p values increased, and C-dl values decreased with the rising of the working concentration. Quantum chemical calculation showed that there was a positive correlation between some inhibitors structure properties and the inhibitory efficiency. The inhibitors function through adsorption followed Langmuir isotherm, and chemisorption made more contribution to the adsorption of the inhibitors on the steel surface compared with physical adsorption. SEM analysis suggested that the metal had been protected from aggressive corrosion because of the addition of the inhibitors.
Theoretical investigation on the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface
Resumo:
In this paper, the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface were investigated by using cluster (Gaussian 03) and periodic (DMol(3)) ab initio calculations. Si(111) surface was described with cluster models (Si14H17 and Si22H21) and a four-silicon layer slab with periodic boundary conditions. The effect of basis set superposition error (BSSE) was taken into account by applying the counterpoise correction. The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111) surface are large, suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface. With the increase of number, water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation. The Ag+ cation in aqueous solution will safely attach to the clean Si(111) surface.
Resumo:
To model the adsorption of Na+ in aqueous solution on the semiconductor surface, the interactions of Na+ and Na+(H2O)(n) (n = 1-6) with a clean Si(111) surface were investigated by using hybrid density functional theory (B3LYP) and Moller-Plesset second-order perturbation (MP2) methods. The Si(111) surface was described with Si8H12, Si16H20, and Si22H21 Cluster models. The effect of the basis set superposition error (BSSE) was taken into account by applying the counterpoise (CP) correction. The calculated results indicated that the interactions between the Na+ cation and the dangling bonds of the Si(111) surface are primarily electrostatic with partial orbital interactions. The magnitude of the binding energies depends weakly on the adsorption sites and the size of the clusters. When water molecules are present, the interaction between the Nal and Si(I 11) surfaces weakens and the binding energy has the tendency to saturate. On a Si22H21 cluster described surface, the optimized Na+-surface distance for Na+(H2O)(5) adsorbed at on-top site is 4.16 angstrom and the CP-corrected binding energy (MP2) is -35.4 kJ/mol, implying a weakly adsorption of hydrated Na+ cation on clean Si(111) surface.
Resumo:
Nylon membrane was modified by binding with polyhydroxyl-containing materials to increase its hydrophilicity and reduce its nonspecific interaction with proteins. The effect of binding hydrophilic materials on amount of ligand bound-Cibacron Blue F3GA (CBF) was investigated. Experimental data showed that the amount of CBF bound can be increased significantly after binding of hydrophilic materials.
Resumo:
The adsorption of CO on Al(2)O(3), ZrO(2), ZrO(2)-SiO(2), and ZrO(2)-La(2)O(3) supported Pd catalysts was studied by adsorption microcalorimetry and infrared (TR) spectroscopy. Some interesting and new correlations between the results of microcalorimetry and IR spectroscopy have been found. The CO is adsorbed on palladium catalysts in three different modes: multibonded (3-fold), bridged (2-fold), both on Pd(lll) and (100) planes, and linear (1-fold) adsorbed species. The corresponding differential adsorption heats lie in the field of high (210-170 kJ/mol), medium (140-120 kJ/mol), and low (95-60 kJ/mol) values, respectively. The nature of the support, the reduction temperature, and the pretreatment conditions affect the surface structure of the Pd catalysts, resulting in variations in the site energy distribution, i.e., changes in the fraction of sites adsorbing CO with specific heats of adsorption. Moreover, the CeO(2); promoter addition weakens the adsorption strength of CO on palladium. Based on the exposed results, a correctness factor, which considers the percentages of various CO adsorption states, must be introduced when one calculates the Pd dispersion using CO adsorption data.