277 resultados para 16S-rDNA
Resumo:
畜禽废水是农村水环境污染的主要来源之一,其处理的难点在于脱氮。传统生物脱氮法具有能耗高、需大量外加碳源等缺点,开发低成本、高效率的新型生物脱氮技术具有重要意义。 本研究将短程硝化反硝化和厌氧氨氧化两种脱氮新技术结合,让前者为后者创造去除可降解COD、降低总氮负荷、调整pH、调整氨氮和亚硝酸盐氮浓度比例等进水条件,而后者可在无需外加碳源的条件下进一步脱氮,二者结合可成为高氨氮、低C/N废水脱氮的新途径。 试验以低碳氮比猪场废水为研究对象,首先进行了短程硝化反硝化预处理研究,同时启动并运行调控厌氧氨氧化反应器,最后以经过短程硝化反硝化预处理的猪场废水为进水,进行厌氧氨氧化脱氮考察。实验表明:(1)短程硝化反硝化作为厌氧氨氧化的预处理工序是可行的。猪场废水通过短程硝化反硝化,可以达到基本去除可生化COD、部分脱氮、控制出水氨氮和亚硝酸盐氮浓度之比在1︰1左右、pH在7.5~8.0的目的, COD和总氮平均去除率分别为64.3%、49.1%,出水可达到厌氧氨氧化反应的进水要求。(2)采用模拟废水启动厌氧氨氧化反应器,经过5个月左右的运行调控,反应器启动成功并稳定运行,最高总氮去除率为87.1%,总氮容积去除率最高达到0.14kg/m3.d;整个稳定阶段,氨氮、亚硝酸盐氮、硝酸盐氮的变化量之比为1︰1.21︰0.33。(3)经过短程硝化反硝化预处理的猪场废水厌氧氨氧化脱氮效果稳定,氨氮、亚硝酸盐氮、总氮、COD的平均去除率分别为93.0%、99.4%、84.6%、18.1%,处理效果与模拟废水处理系统相比无明显变化。(4)经过短程硝化反硝化预处理后,猪场废水中残留有机物成分在厌氧氨氧化反应过程中无显著变化,主要为酯类和烷烃类物质;残留有机物对厌氧氨氧化效果无明显影响。(5)采用PCR技术进行特殊功能菌种检测,结果表明模拟废水处理系统和猪场废水处理系统的菌群中均含有厌氧氨氧化菌和好氧硝化菌;通过blast比对,厌氧氨氧化菌扩增序列与未培养的Planctomycetales菌和Candidatus Brocadia fulgida菌16S rRNA部分序列相似性分别为95%、90%。(6)MPN法菌种计数结果显示,模拟废水处理系统和猪场废水处理系统的菌群中均含有硝化细菌、亚硝化细菌和少量反硝化菌,实验条件下的微生物系统是一个厌氧氨氧化菌与好氧硝化菌、反硝化菌共存的系统。 Poultry wastewater is one of the main source of water pollution in rural areas,and nitrogen removal is the most difficult part in treating poultry wastewater. There are some disadvantages in traditional nitrogen removal, such as high energy consumption and more additional organic carbon. It is important to develop ecolomical and efficient technologyies. Shortcut nitricfication/denitrification, as a pretreatment process, was combined with Anammox in this research, so that part of total nitrogen and most degradable COD could be removed by the former, and further nitrogen removal could be implemented by the latter. The combination of the two technologies was a new approach to treat wastewater with high ammonium and low C/N. Piggery wastewater with low C/N was treated in lab-scale experiment. Firstly, shortcut nitrification/denitrification was investigated, and Anammox reactor was started up successfully at the same time. Then piggery wastewater after pretreatment was treated by Anammox. The results showed :(1) It was feasible to take nitrification/denitrification as the pretreatment process of Anammox. By using this process, part of total nitrogen and COD were removed, the ratio of ammonium and nitrite reached around 1︰1 and the pH was about 7.8, which were favorable for Anammox. The average removal percentage of COD and total nitrogen were about 64.3% and 49.1%, respectively. (2) Simulated wastewater was used to start up Anammox reactor. The reactor was started up successfully within 5 months and stable performance was achieved. The highest nitrogen removal reached 87.1% and the biggest volumetric total nitrogen removal rate reached 0.14kg/m3.d. The average ratio of ammonium, nitrite and nitrate was 1:1.21:0.33. (3)Taking the effluent of shortcut nitrification/denitrification as the influent, the nitrogen removal efficiency of Anammox was stable, and the the average removal percentage of ammonium, nitrite, total nitrogen and COD were 93.0%, 99.4% , 84.6% and 18.1%, respectively, which had little difference with that by using simulated wastewater..(4) After pretreatment, the residual organic carbon in piggery wastewater showed no obvious change during the Anammox process, and the main organic compounds were saturated hydrocarbon and ester, which had no obvious negative effect on Anammox process.(5) By PCR technology, the existence of Anammox bacteria was confirmed and the aerobic nitrifying bacteria was found to coexist as well. The result of blast showed that the identities of Anammox bacterium to part of 16S rRNA sequence of uncultured Planctomycetales bacterium and Candidatus Brocadia fulgida bacterium were 95% and 90%, respectively.(6)By MPN method, nitrite oxidizer, ammonium oxidizer and denitrification bacteria were detected in both simulated and piggery wastewater treatment system of Anammox, and the microorganism system was composed of Anammox bacteria,aerobic bacteria and denitrification bacteria together.
Resumo:
自养硝化过程在自然界氮素循环和污水处理系统脱氮过程中起着关键作用。因此,了解有机碳对硝化的影响和硝化菌与异养菌之间的竞争对微生物生态学和污水处理系统设计都很重要。目前对氨氧化到硝酸盐氮过程的研究文献很多,但对亚硝酸盐氧化过程在异养菌的存在下如何受到有机碳影响的研究甚少。本文从生理生化指标、基因组学、蛋白组学三方面考察了在实验室条件下有机碳(乙酸钠)对硝化细菌和异养菌组成的混合菌群的硝化性能、菌群结构及代谢功能的变化的影响。 全文分为两大部分: 第一部分为乙酸钠对游离态硝化混合菌群的硝化性能和菌群结构的短期影响。混合菌株先在自养条件下进行连续培养,两个月后硝化速率达到20 mg N/(L·d);而后离心收集菌体进行批式实验。在批式反应器中,初始亚硝氮均为126mg N/ L,乙酸钠-C 与亚硝酸盐-N 的比分别为0,0.44,0.88,4.41,8.82。结果表明:在低C/N 比(0.44 和0.88)时,亚硝酸盐去除速率比C/N=0 下高,细菌呈现一次生长;而在高C/N 比(4.41 和8.82)时,出现连续的硝化反硝化,亚硝酸盐去除率仍比对照下高,细菌呈现二次生长。不同C/N 比下微生物群落明显不同,优势菌群从自养和寡营养细菌体系(包括亚硝酸盐氧化菌,拟杆菌门,α-变形菌纲,浮霉菌门和绿色非硫细菌下的一些菌株)过渡到异养和反硝化菌体系 (γ-变形菌纲的菌株尤其是反硝化菌Pseudomonas stutzeri 和P. nitroreducens 占主导)。 第二部分为乙酸钠对硝化混合菌群生物膜的硝化性能和菌群结构的长期影响。接种富集的硝化混合菌群于装有组合式填料的三角瓶中,于摇床中自养培养;两个月后填料上形成生物膜的硝化速率达到20 mg N/ (L·d);而后进行长期实验,每12 小时更换混合营养培养基(亚硝氮约200 mg N/ L,C/N 比同上)。结果显示:相较于C/N 比=0 时的亚硝酸盐氧化反应来说,低C/N 比出现了部分的反硝化,而高C/N 比则是几乎完全的反硝化。与对照比,C/N=0.44 时亚硝酸盐氧化速率并未受乙酸钠的影响,反而上升了,但C/N=0.88 时亚硝酸盐氧化速率有所下降。菌群结构分析表明自养对照与混合营养下微生物群落的不同;PCR-DGGE未检测出混合营养下硝化杆菌的存在,而显示异养菌尤其是反硝化菌的大量存 在。荧光定量PCR 结果表明随C/N 比上升,硝化杆菌数量从2.42 × 104 下降到1.34× 103 16S rRNA gene copies/ ng DNA,反硝化菌由0 增加至2.51 × 104 nosZgene copies/ ng DNA。SDS-PAGE 的结果表明不同C/N 比下的蛋白组较为复杂且呈现一定的差异性。 有机碳对亚硝氮氧化及微生物群落的影响很复杂,本文分别讨论了对游离态和生物膜固定态两种状态的混合菌群相应的短期和长期影响研究。研究发现,有机碳并非一定带来硝化的负影响,如果控制在适当的C/N 比范围,有机碳是有利于亚硝氮氧化的。这些发现阐明了有机碳和硝化反硝化的关系,填补了硝化微生物生态学上的空白,对污水处理系统中减少异养菌的影响并提高氮去除率有一定理论指导意义。 Nitrification plays a key role in the biological removal of nitrogen in both nature and wastewater treatment plant (WWTP). So, understanding of the effect of organic carbon on nitrification and the competition between nitrifying bacteria and heterotrophic bacteria is important for both microbial ecology and WWTP design and operation. Despite the fact that the nitrification process of ammonia to nitrate has been extensively investigated, it is not known how the process of nitrite oxidization is affected by organic carbon when heterotrophic bacteria are present. By measuring different physiological and biochemical parameters, as well as using genomic DNA and proteome analysis, we investigated the influence of organic (acetate) on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria under laboratory conditions. The dissertation involves two parts: Part one deals with the effect of organic matter on functional performance and bacterial community shift of nitrite-oxidizing and heterotrophic bacteria under suspended state. The bacteria were prepared in a continuous-flow stirred reactor under autotrophic condition; after two months, the nitrification rate of the culture reached about 20 mg N/ (L·d); then the bacteria were harvested for the next batch experiments. The initial concentrations of nitrite were 126 ± 6 mg N/ L in all flasks, and sodium acetate (C) to nitrite (N) ratios were 0, 0.44, 0.88, 4.41, and 8.82, respectively. The results showed that at low C/N ratios (0.44 or 0.88), the nitrite removal rate was higher than that obtained under autotrophic condition and the bacteria had single growth phase, while at high C/N ratios (4.41 or 8.82), continuous aerobic nitrification and denitrification occurred besides higher nitrite removal rates, and the bacteria had double growth phases. The community structure of total bacteria strikingly varied with the different C/N ratios; the dominant populations shifted from autotrophic and oligotrophic bacteria (NOB, and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria) to heterotrophic and denitrifying bacteria (strains of Gammaproteobacteria, especially Pseudomonas stutzeri and P. nitroreducens). Part two describes the influence of acetate on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria in biofilms. Bacterial enrichments was transferred into flasks with polypropylene carriers and cultured under agitated and autotrophic condition. After two month, the biofilms grown on the carriers had a nitrification rate of about 20 mg N/ (L·h); then the biofilms were refreshed with mixotrophic medium (nitrite were 200 mg N/ L in all flasks, and C/N ratios was the same as above) every 12 h. the results show: normal nitrite oxidization reactions were performed when C/N = 0, but nitrite oxidization and partial denitrification occurred with low C/N ratios (0.44 or 0.88). At high C/N ratios (4.41 or 8.82), we mainly observed denitrification. In contrast to C/N = 0, the nitrite oxidization rate was unaffected when C/N = 0.44, but decreased with C/N = 0.88. The structure of bacterial communities varied significantly between autotrophic and mixotrophic conditions. Nitrobacter was hard to detect by PCR-DGGE while heterotrophs and especially denitrifiers were in the majority under mixotrophic conditions. Real-time PCR indicated that the Nitrobacter population decreased from 2.42 × 104 to 1.34 × 103 16S rRNA gene copies/ ng DNA, while the quantity of denitrifiers obviously increased from 0 to 2.51×104 nosZ gene copies/ ng DNA with an increasing C/N ratio. SDS-PAGE indicated the complexity of and a certain difference between the proteome of nitrite-oxidizing and heterotrophic bacteria at different C/N ratios. We conclude that the influence of organic matter on nitrite oxidation and the community structure of NOB and heterotrophic bacteria is complex. In this dissertation, we focused on how sodium acetate influenced the system both under suspended state and in biofilms. We observed that acetate did not necessarily have a negative impact on nitrification. Instead, an appropriate amount of acetate benefited both nitrite oxidization and denitrification. These findings provide a greater understanding about the relationship between organics and nitrification; they fill the gaps in the field of microbial ecology of nitrifying bacteria; they also provide insight into how to minimize the negative impact of heterotrophic bacteria and maximize the benefit of nitrogen removal in biological treatment systems.
Resumo:
从采集的土壤样品中分离筛选出一株碱性蛋白酶产生菌G-41,经16S rRNA分子鉴定为芽孢杆菌属菌株。该菌株在发酵培养基中能产生较高产量的胞外碱性蛋白酶(1.7×104U/mL)。以G-41为出发菌株,对其进行重离子辐照诱变处理,获得突变株G-41-68,将该突变株再次经重离子诱变,从大量突变株中筛选出碱性蛋白酶高产菌株15Gy-54,其酶活力达到6.22×104U/mL。与出发菌株相比较,突变株G-41-68和15Gy-54的酶活力分别提高了1.58倍和2.65倍。对突变株15Gy-54的发酵条件进行了优化研究,结果表明,该菌株的碱性蛋白酶活力得到进一步提高,达到7.18×104U/mL,其最适发酵条件为:培养基(g/100mL)为胰蛋白胨1、酵母膏0.5、乳糖5、Na2HPO4·12H2O0.4、KH2PO40.03、Na2CO30.1、MgSO40.0481(4×10-3mol/L)、pH8.0,培养温度41℃,振荡培养时间42-48h。实验结果表明,重离子辐照诱变技术是一种非常有效的微生物诱变育种新技术。
Resumo:
采集长白山自然保护区北坡东北赤杨、西伯利亚赤杨、色赤杨根瘤样品 2 1个 ,对根瘤内FrankiaDNA的 16S -2 3SrDNA和nifD -nifK两个基因间隔区段 (IGS)进行PCR -RFLP分析 ,研究其基因多样性。结果表明 :与赤杨共生的Frankia菌存在丰富的基因多样性 ,基因类型与宿主种型关系密切。东北赤杨对Frankia的特异性较高 ,与西伯利亚赤杨和色赤杨共生的Frankia菌有较近的亲缘关系。上述结果说明Frankia菌与其宿主赤杨间存在着协同进化
Resumo:
在云南省高黎贡山自然保护区海拔 1310~ 2 4 0 0m的范围内 ,采集 30个旱冬瓜根瘤样品 ,直接从根瘤中提取FrankiaDNA ,对其nifD nifK基因间隔区 (intergenicspacer,IGS)和 16S 2 3SrDNAIGS进行PCR RFLP分析 .结果表明 ,nifD nifKIGS的PCR产物长度差异很大 ,经HaeⅢ和AfaⅠ双酶切后 ,得到 15种酶切带型 ,检测到多种基因型的菌株同时与同一株宿主植物共生 ;16S 2 3SrDNAIGS的PCR产物长度相似 ,酶切后亦区分出 15种酶切带型 .通过对两个基因间隔区的PCR RFLP联合分析 ,发现高黎贡山旱冬瓜Frankia存在 2 0种基因型
Resumo:
从南海红树林木榄(Bruguiera gymnorrhizo)根际土壤中分离到一株具有拮抗杉木致害菌尖孢镰刀菌萎蔫专化型SF2(Fusariumoxysporum f.sp.vasinfectum)活性的海洋细菌3728菌株,对分离菌株的形态特征、培养特征、生理生化特征和16S rRNA基因序列进行了系统的研究。发现细菌3728与枯草芽孢杆菌(Bacillus subtilis)序列相似性最高,达到100%,在系统进化树中与枯草芽孢杆菌(Bacillus subtilis AJ276351)处于同一分支上,结合形态和生理生化分析结果,将其鉴定为枯草芽孢杆菌。
Resumo:
ARDRA(扩增性rDNA限制性酶切片段分析)是新发展起来的一项生物检测技术,可在原位下获取其有关生物性状。本文阐述了ARDRA技术的原理和方法,介绍了该技术在微生物多样性和系统发育研究中的应用,并对ARDRA技术的应用前景提出展望。
Resumo:
应用传统及PCRDGGE方法(denaturinggradientgelelectrophoresis),分别对不同浓度乙草胺、甲胺磷胁迫下黑土中可培养真菌CFU(colonyformingunits)、种群丰富度(richness)及种群结构动态变化规律进行了研究.结果表明,在实验室微域条件下,乙草胺对黑土可培养真菌CFU的影响随处理浓度的增加而抑制作用增强,表现出由低浓度(50mg·kg-1)时的刺激生长到高浓度(250mg·kg-1)时的长期抑制效应;250mg·kg-1甲胺磷在8周处理过程中对土壤可培养真菌生长具有显著的刺激效应,使可培养真菌CFU比对照增加10倍,但50和150mg·kg-1甲胺磷处理对土壤可培养真菌CFU无显著影响.种群丰富度系数分析结果表明,高、中浓度乙草胺处理可使土壤可培养真菌种群丰富度不可逆地降低.土壤真菌rDNA特异PCRDGGE聚类分析结果表明,不同浓度乙草胺、甲胺磷处理均不同程度地对土壤可培养真菌的种群组成和结构造成影响,其中甲胺磷尤为显著.
Resumo:
Diversity of particle-attached and free-living marine bacteria in Victoria Harbor, Hong Kong, and its adjacent coastal and estuarial environments was investigated using DNA fingerprinting and clone library analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that bacterial communities in three stations of Victoria Harbor were similar, but differed from those in adjacent coastal and estuarine stations. Particle-attached and free-living bacterial community composition differed in the Victoria Harbor area. DNA sequencing of 28 bands from DGGE gel showed Alphaproteobacteria was the most abundant group, followed by the Bacteroidetes, and other Proteobacteria. Bacterial species richness (number of DGGE bands) differed among stations and populations (particle-attached and free-living; bottom and surface). BIOENV analysis indicated that the concentrations of suspended solids were the major contributing parameter for the spatial variation of total bacterial community structure. Samples from representative stations were selected for clone library (548 clones) construction and their phylogenetic distributions were similar to those of sequences from DGGE. Approximately 80% of clones were affiliated to Proteobacteria, Bacteroidetes and Cyanobacteria. The possible influences of dynamic pollution and hydrological conditions in the Victoria Harbor area on the particle-attached and free-living bacterial community structures were discussed.
Resumo:
Diversity of particle-attached and free-living marine bacteria in Victoria Harbor, Hong Kong, and its adjacent coastal and estuarial environments was investigated using DNA fingerprinting and clone library analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that bacterial communities in three stations of Victoria Harbor were similar, but differed from those in adjacent coastal and estuarine stations. Particle-attached and free-living bacterial community composition differed in the Victoria Harbor area. DNA sequencing of 28 bands from DGGE gel showed Alphaproteobacteria was the most abundant group, followed by the Bacteroidetes, and other Proteobacteria. Bacterial species richness (number of DGGE bands) differed among stations and populations (particle-attached and free-living; bottom and surface). BIOENV analysis indicated that the concentrations of suspended solids were the major contributing parameter for the spatial variation of total bacterial community structure. Samples from representative stations were selected for clone library (548 clones) construction and their phylogenetic distributions were similar to those of sequences from DGGE. Approximately 80% of clones were affiliated to Proteobacteria, Bacteroidetes and Cyanobacteria. The possible influences of dynamic pollution and hydrological conditions in the Victoria Harbor area on the particle-attached and free-living bacterial community structures were discussed.
Resumo:
Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.
Resumo:
Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.
Resumo:
A simple, inexpensive and efficient method was developed for rapid isolation of total genomic DNA from 15 red algal species. It resulted in 0.1 mug high quality DNA from 1 mg fresh algal material, with an A(260)/A(280) ratio of 1.68 - 1.90. Using this rapidly isolated DNA, the 18S ribosomal RNA genes ( rDNA) and the nuclear ribosomal DNA of the internal transcribed spacer (ITS) regions were amplified. The tested DNA was suitable for restriction endonuclease digestion, genetic marker analysis and polymerase chain reaction (PCR) amplification, and may be valid for other genetic manipulation.
Resumo:
A Gymnodinium-like species was studied with light microscopy (LM) and scanning electron microscopy (SEM). Also, the internal transcribed spacers (containing 5.8S rDNA) and large ribosomal subunit DNA (D1-D2) sequences were obtained by PCR amplification, and then sequenced to explore the relationships within our isolate, Gymnodinium and other Gymnodinium-like species, including Karenia, Gyrodinium, Karlodinium and Symbiodinium. The LM observation showed that the species was characterized by moving in a levorotatory direction, visible hypocone, epicone and transverse groove, all of which are typical for Gymnodinium. In addition, two flagella could be found under SEM. The phylogenetic analysis revealed that the isolate grouped with Symbiodium, rather than other relevant dinoflagellates. All results showed our isolate belongs to Symbiodium. The strain was isolated from a red tide water sample, denoting that Symbiodium may be causative species for algal bloom.