231 resultados para selective attention


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, oxygen permeable membrane used in membrane reactor for selective oxidation of alkanes will be discussed in detail. The recent developments for the membrane materials will be presented, and the strategy for the selection of the membrane materials will be outlined. The main applications of oxygen permeable membrane in selective oxidation of light alkanes will be summarized, which includes partial oxidation of methane (POM) to syngas and partial oxidation of heptane (POH) to produce H-2, oxidative coupling of methane (OCM) to C-2, oxidative dehydrogenation of ethane (ODE) to ethylene and oxidative dehydrogenation of propane (ODP) to propylene. Achievements for the membrane material developments and selective oxidation of light alkanes in membrane reactor in our group are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phenylurea herbicides-selective molecularly imprinted polymer (MIP) was prepared using N-(4-isopropylphenyl)-N'-butyleneurea as a dummy template and toluene as a porogen. The experimental results showed that the optimum molar ratio of template, functional monomer (MAA) and cross-linker (EDMA) was 1:8:20. Scatchard analysis showed that two classes of binding sites were formed in the imprinted polymer with dissociation constants of 26.81 mu L mol l(-1) and 1.428 mmol l(-1). The affinity and selectivity of MIP for phenylurea herbicides were studied. Among the 14 phenylurea herbicides tested, the MIP prepared showed obviously high affinity and selectivity for 10 chemicals (monuron, diuron, isoproturon, fenuron, chlortoluron, difenoxuron, metoxuron, neburon, buturon and fluometuron) with dichloromethane containing 10% hexane as mobile phase while non-imprinted polymer showed very low affinity for all the phenylurea herbicides tested. The experimental and calculated results also indicated that the size and property of the group at the N' position of phenylurea molecules have great influence on the affinity of MIP for them and the recognition site is mainly located at the N' position of phenylurea herbicides. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purely organic and catalytic systems of anthraquinones and N-hydroxyphthalimide efficiently promote oxygenation of hydrocarbons with dioxygen under mild conditions, e.g., fluorene can be converted completely to fluorenone with 85% yield at 80 degreesC.