219 resultados para reaction pathways
Resumo:
Initially, pore walls of mesoporous silica SBA-15 with template were modified with chlorotrimethylsilane. Then imidazolium salts were similarly incorporated covalently in the inner pore walls of mesoporous silica SBA-15 albeit without the template. Finally, palladium salts were introduced into the pore channels of the previously processed mesoporous silica via electrostatic interaction. The resulting palladium catalysts demonstrated exceptional activity for the room-temperature Suzuki Coupling reaction in aqueous-organic mixed solvents and good recycling ability for at least 4-6 times.
Resumo:
Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd-WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.
Resumo:
During the reaction of reduced C-60 with benzyl bromide in benzonitrile, a novel cis-1 C-60 adduct, 1,4-dibenzyl-2,3-cyclic phenylimidate C-60 (1), Was obtained rather than the expected product of 1,4-dibenzyl C-60. The structure of compound 1 was analyzed by X-ray single-crystal diffraction, identifying the presence of a five-membered heterocycle at a [5,6] bond of C-60. One of the heteroatoms is assigned as a nitrogen atom; however, the identity of the other heteroatom cannot be determined unambiguously by crystallography due to similarity between the nitrogen and oxygen atoms.
Resumo:
In this paper, we introduced a novel bonding method of glass wafers by Diels-Alder reaction at mild temperature. After standard hydroxylization and aminosilylation, two wafers were modified by 2-furaldehyde and maleic anhydride, respectively. Then they were brought into close contact and tightly held with a clamping fixture. A strong bonding could be achieved by annealing for 5 h at 200 degrees C. Bonding strength is as high as 1.78 MPa and sufficient for most application of microfluidic chips.
Resumo:
A mathematical model of the chemical kinetics of silicone rubber Vulcanization is developed, with the thermal effects being computed using the increment method, and the hot Vulcanization process estimated with the finite element method. The results show that the reaction heat of rubber vulcanization is important for energy saving, and that a proper curing medium temperature is important when considering both vulcanization efficiency and vulcanizate uniformity. The results also indicate that increases in the forced convective heat transfer coefficient have no significant effect above a certain level. The validity of the numerical model is indirectly proven by comparison with existing data.
Resumo:
Carbon black and titanium dioxide supported iron tetraphenylporphyrin (FeTPP/TiO2/C) catalysts for oxygen reduction reaction (ORR) were prepared by sol-gel and precipitation methods followed by a heat-treatment at temperatures of 400-1000 degrees C. The FeTPP/C and TiO2/C were also studied for comparison. The FeTPP/TiO2/C pyrolyzed at 700 degrees C exhibits significantly improved stability while maintaining high activity towards ORR in comparison with the FeTPP/C counterpart. The electrochemical study combined with XRD, XPS, and SEM/EDX analyses revealed that the appropriate dispersion of TiO2 on the surface of FeTPP/TiO2/C catalysts, which depending on heat-treatment temperature, plays a crucial role in determining the activity and stability of catalysts.
Resumo:
The reaction mechanism of Pd(O)-catalyzed allenes silastannation reaction is investigated by the density functional method B3LYP. The overall reaction mechanism is examined. For the allene insertion step, the Pd-Si bond is preferred over the Pd-Sn bond. The electronic mechanism of the allene insertion into Pd-Si bond to form sigma-vinylpalladium (terminal-insertion) and sigma-allylpalladium (internal-insertion) insertion products is discussed ill terms of the electron donation and back-donation. It is found that the electron back-donation is significant for both terminal- and internal-insertion. During allene insertion into Pd-Si bond, internal-insertion is preferred over terminal-insertion. By using methylallene, the regio-selectivity for the monosubstituted allene insertion into Pd-Si and Pd-Sn bond is analyzed.
Resumo:
The reaction mechanism of Pd(O)-catalyzed allene bis-selenation reactions is investigated by using density functional methods. The overall reaction mechanism has been examined. It is found that with the bulkier PMe3 ligand, the rate-determining step is the reductive elimination process, while allene insertion and reductive elimination processes are competitive for the rate-determining step with the PH3 ligand, indicating the importance of the ligand effect. For both cis and trans palladium complexes, allene insertion into the Pd-Se bond of the trans palladium complex using the internal carbon atom attached to the selenyl group is prefer-red among the four pathways of allene insertion processes. The formation of sigma-allyl and pi-allyl palladium complexes is favored over that of the sigma-vinyl palladium species. By using methylallene, the regioselectivity of monosubstituted allene insertion into the Pd-Se bond is analyzed.
Resumo:
A series of chromium/Schiff base complexes N,N'-bis(salicylidene)-1,2-phenylenediamino chromium(III) X were prepared and employed for the alternating copolymerization of carbon dioxide with racemic propylene oxide in the presence of (4-dimethylamino)pyridine. The effect of the complex structure and reaction conditions on the catalytic activity, the poly(propylene carbonate)/cyclic carbonate (PPC/PC) selectivity, and the polymer head-to-tail linkages was examined. The experiments indicated that N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-phenylenediamino chromium(III) (NO3) exhibited the highest PPC/PC selectivity as well as polymer head-to-tail linkages and N,N'-bis(3,5-dichlorosalicylidene)-1,2-phenylenediimino chromiu(III) (NO3) possessed the highest catalytic activity among these chromium/Schiff base complexes. The structure of the produced copolymer was characterized by the IR, H-1 NMR, and C-13 NMR measurements.