314 resultados para peptide adsorption
Resumo:
A layer-by-layer (LbL) adsorption and polymerization method was developed for the controllable preparation of polypyrrole (PPy) nanoparticles within ultrathin films. By repetitive adsorption of pyrrole and subsequent polymerization with 12-molybdophosphoric acid, the polyelectrolyte multilayer films containing PPy nanoparticles were fabricated. UV-visible absorption spectrocopy, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and cyclic voltammograras (CVs) were used to characterize the PPy nanoparticles and their multilayer thin films. UV-visible spectra indicate that the growth of PPy nanoparticles was regular and occurred within the polyelectrolyte films. The size of prepared PPy nanoparticles was found by TEM to increase with the increasing of polymerization cycles. The electrochemistry behavior of the multilayer thin films was studied in detail on ITO. The results suggest that the LbL adsorption and polymerization method developed herein provides an effective way to prepare PPy nanoparticles in the polymer matrix.
Resumo:
Equilibrium distributions of cobalt(II), nickel(II), zinc(II), cadmium(II), and copper(II) have been studied in the adsorption with extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid (HEOPPA) as an extractant from chloride medium. The distribution coefficients are determined as a function of pH. The data are analyzed both graphically and numerically. The extraction of the metal ions can be explained assuming the formation of metal complexes in the resin phase with a general composition ML2(HL)(q). The adsorbed species of the metal ions are proposed to be ML2 and the equilibrium constants are calculated. The efficiency of the resin in the separation of the metal ions is provided according to the separation factors values. The separation of Zn from Ni, Cd, Cu, Co, and Co from Ni, Cd, Cu with the resin is determined to be available. Furthermore, Freundlich's isothermal adsorption equations and thermodynamic quantities, i.e., DeltaG, DeltaH, and DeltaS are determined.
Resumo:
Tapping mode atomic force microscopy (AFM) was applied to study the adsorption behavior of methanol on mica, highly oriented pyrolytic graphite (HOPG) and indium-tin oxide (ITO) coated glass substrates. On mica and HOPG substrates surfaces, the thin films of methanol with bilayer and multilayer were observed, respectively. The formation of irregular islands of methanol was also found on HOPG surface. On ITO surface only aggregates and clusters of methanol molecules were formed. The influence of sample preparation on the adsorption was discussed.
Resumo:
The oxidation and adsorption of the temperature-denatured DNA at GC electrode are studied by differential pulse voltammetry and in situ FTIR spectroelectrochemistry. The temperature-denatured DNA is adsorbed and formed a DNA multilayer at electrode surface. The temperature-denatured DNA showing partly reversible process was first observed based on the reduction peaks appearing at negative scans and the reversible spectral change. The oxidation product of the temperature-denatured DNA can not diffuse away from the electrode surface easily due to the impediment of the DNA multilayer, so it can be partly reduced.
Resumo:
The assembly of alternating DNA and positively charged poly(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer-by-layer adsorption has been studied. The real-time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. Electrochemical impedance spectroscopy (EIS) and UV-vis absorbance measurements were also used to study the film assembly, and linear film growth was observed. All the results indicate that the uniform multilayer can be obtained on the poly(ethylenimine)- (PEI-) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by the real-time BIAcore technique; the observed rate constant was calculated using a Langmuir model (k(obs) = (1.28 +/- 0.08) x 10(-2) s(-1).
Resumo:
The elucidation of key influence factors for electrostatic adsorption is very important to control protein nonspecific adsorption on modified surfaces. In this study, real-time surface plasmon resonance technique is used to characterize the electrostatic adsorption of two proteins (mouse IgG and protein A) on carboxymethyldextran-modified surface. The results show that protein solution pH and ionic strength are key influence factors for efficient electrostatic adsorption. The influence of protein, solution pH on the amount of electrostatic adsorption depends on the type of the charge and the charge density of both protein and modified matrix on the surface. The electrostatic adsorption process involves a competition between the positively charged protein and other positively charged species in the buffer solution. A decrease of ionic strength leads to an increasing electrostatic adsorption. The kinetic adsorption constants of protein A at different pH values were also calculated and compared.
Resumo:
The adsorption and oxidation of yeast RNA and herring sperm DNA (HS DNA) at glass carbon (GC) electrode are studied by differential pulse voltammetry (DPV) and in situ FTIR spectroelectrochemistry. Two oxidation peaks of yeast RNA are obtained by DPV, whose peak potentials shift negatively with increasing pH. The peak currents decrease gradually in successive scans and no corresponding reduction peaks occur, thus indicating that the oxidation process of yeast RNA is completely irreversible. The IR bands in the 1200-1800 cm-l range, attributed to the stretching and ring vibrations of nucleic acid bases, show the main spectral changes when the potential is shifted positively, which gives evidence that the oxidation process takes place in the base residues. The oxidation process of HS DNA is similar to that of yeast RNA. The results both from DPV and in situ FTIR spectroelectrochemistry confirm that the guanine and adenine residues can be oxidized at the electrode surface, which is consistent with the oxidation mechanism of nucleic acids proposed previously. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In-situ Fourier transform infra-red (FTIR) spectra of native and thermally denatured calf thymus DNA (CT DNA) adsorbed and/or oxidized at a glassy carbon (GC) electrode surface are reported. The adsorption of native DNA occurs throughout the potential range (-0.2 similar to 1.3 V) studied, and the adsorbing state of DNA at electrode surface is changed from through the C=O band of bases and pyrimidine rings to through the C=O of cytosine and imidazole rings while the potential shifts negatively from 1.3 V to -0.2 V. An in-situ FTIR spectrum of native CT DNA adsorbed at GC electrode surface is similar to that of the dissolved DNA, indicating that the structure of CT DNA is not distorted while it is adsorbed at the GC electrode surface. In the potential range of -0.2 similar to 1.30 V, the temperature-denatured CT DNA is adsorbed at the electrode surface first, then undergoes electrochemical oxidation reaction and following that, diffuses away from the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.