219 resultados para mtDNA ND4-tRNALeu gene
Resumo:
Background: Human skeletal system has evolved rapidly since the dispersal of modern humans from Africa, potentially driven by selection and adaptation. Osteogenin (BMP3) plays an important role in skeletal development and bone osteogenesis as an antagonist of the osteogenic bone morphogenetic proteins, and negatively regulates bone mineral density. Methodology/Principal Findings: Here, we resequenced the BMP3 gene from individuals in four geographically separated modern human populations. Features supportive of positive selection in the BMP3 gene were found including the presence of an excess of nonsynonymous mutations in modern humans, and a significantly lower genetic diversity that deviates from neutrality. The prevalent haplotypes of the first exon region in Europeans demonstrated features of long-range haplotype homogeneity. In contrast with findings in European, the derived allele SNP Arg192Gln shows higher extended haplotype homozygosity in East Asian. The worldwide allele frequency distribution of SNP shows not only a high-derived allele frequency in Asians, but also in Americans, which is suggestive of functional adaptation. Conclusions/Significance: In conclusion, we provide evidence for recent positive selection operating upon a crucial gene in skeletal development, which may provide new insight into the evolution of the skeletal system and bone development.
Resumo:
Melanocortin-1 receptor (MC1R) plays a major role in pigmentation in many species. To investigate if the MC1R gene is associated with coat color in water buffalo, the coding region of MC1R gene of 216 buffalo samples was sequenced, which included 49 black river buffalo (Murrah and Nili-Ravi), 136 swamp buffalo (Dehong, Diandongnan, Dechang, Guizhou, and Xilin) with white and gray body, and 31 hybrid offspring of river buffalo Nili-Ravi (or Murrah) and swamp buffalo. Among the three variation sites found, SNP684 was synonymous, while SNP310 and SNP384 were nonsynonymous, leading to p.S104G and p.I128M changes, respectively. Only Individuals carrying homozygote E-BR/E-BR were black. The genotype and phenotype analysis of the hybrid offspring of black river buffalo and gray swamp buffalo further revealed that the river buffalo type allele E-BR or the allele carrying the amino acid p.104S was important for the full function of MC1R. The in silico functional analysis showed that the amino acid substitutions p.G104S and p.M128I had significant impact on the function of MC1R. Above results indicate that the allele E-BR or the allele carrying the amino acid p.104S was associated with the black coat color in buffalo.
Resumo:
Le polymorphisme au sein de quatre regions du gene codant pour la proteine prion bovine (PRNP) confere la susceptibilite a l'encephalopathie bovine spongiforme (BSE). Ceux-ci comprennent un polymorphisme d'insertion/deletion (indel) de 23 pb dans le promoteur, un indel de 12 pb dans l'intron 1, un octapeptide repete ou un indel de 24 pb au sein du cadre de lecture, et un polymorphisme mononucleotidique (SNP) dans la region codante. Dans ce travail, les auteurs ont examine la frequence des genotypes, des alleles et des haplotypes pour ces indel au sein de 349 bovins d'origine chinoise, de meme que la sequence nucleotidique de ce gene chez 50 de ces animaux. Leurs resultats montrent que l'allele ayant la deletion de 12 pb et l'haplotype combinant la deletion de 23 pb et la deletion de 12 pb, lesquels ont ete suggeres comme etant importants pour la susceptibilite a la BSE, sont rares au sein des bovins du sud de la Chine. Une difference significative a ete observee entre les bovins affectes par la BSE et les bovins chinois sains pour ce qui est de l'indel de 12 pb. Au total, 14 SNP ont ete observes dans la region codante du gene PRNP chez les bovins chinois. Trois de ces SNP etaient associes a des changements d'acides amines (K3T, P54S et S154N). La substitution E211K qui a ete rapportee recemment chez un cas atypique de la BSE chez un bovin americain n'a pas ete detectee dans ce travail.
Resumo:
Adaptation is one of the most fundamental issues in the studies of organismal evolution. Pancreatic ribonuclease is a very important digestive enzyme and secreted by the pancreas. Numerous studies have suggested that RNASE1 gene duplication is closely related to the functional adaptation of the digestive system in the intestinal fermentation herbivores. RNASE1 gene thus becomes one of the most important candidate genetic markers to study the molecular mechanism of adaptation of organisms to the feeding habit. Interestingly, RNASE1 gene duplication has also been found in some non-intestinal fermentation mammals, suggesting that RNASE1 gene may have produced novel tissue specificity or functions in these species. In this review, RNASE1 gene and its implications in adaptive evolution, especially in association with the feeding habit of organisms, are summarized.
Resumo:
Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.
Resumo:
Hakka and Chaoshanese are two unique Han populations residing in southern China but with northern Han (NH) cultural traditions and linguistic influences. Although most of historical records indicate that both populations migrated from northern China in the last two thousand years, no consensus on their origins has been reached so far. To shed more light on the origins of Hakka and Chaoshanese, mitochondrial DNAs (mtDNAs) of 170 Hakka from Meizhou and 102 Chaoshanese from Chaoshan area, Guangdong Province, were analyzed. Our results show that some southern Chinese predominant haplogroups, e.g. B, F, and M7, have relatively high frequencies in both populations. Although median network analyses show that Hakka/Chaoshanese share some haplotypes with NH, interpopulation comparison reveals that both populations show closer affinity with southern Han (SH) populations than with NH. In consideration of previous results from nuclear gene (including Y chromosome) research, it is likely that matrilineal landscapes of both Hakka and Chaoshanese have largely been shaped by the local people during their migration southward and/or later colonization in southern China, and factors such as cultural assimilation, patrilocality, and even sex-bias in the immigrants might have played important roles during the process. Am J Phys Anthropol 141:124-130, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Knowledge about the world phylogeny of human mitochondrial DNA (mtDNA) is essential not only for evaluating the pathogenic role of specific mtDNA mutations but also for performing reliable association studies between mtDNA haplogroups and complex disorder
Resumo:
The authors thank all subjects for their participation and Mr. Wen-Zhi Wang for helpful assistance with the data analysis. This study was supported in part by grants (30725044) from the National Natural Science Foundation of China.
Resumo:
The monophyly of Diplura and its phylogenetic relationship with other hexapods are important for understanding the phylogeny of Hexapoda. The complete 18SrRNA gene and partial 28SrRNA gene (D3-D5 region) from 2 dipluran species (Campodeidae and Japygidae), 2 proturan species, 3 collembolan species, and 1 locust species were sequenced. Combining related sequences in GenBank, phylogenetic trees of Hexapoda were constructed by MP method using a crustacean Artemia salina as an outgroup. The results indicated that: (i) the integrated data of 18SrDNA and 28SrDNA could provide better phylogenetic information, which well supported the monophyly of Diplura; (ii) Diplura had a close phylogenetic relationship to Protura with high bootstrap support.