460 resultados para movement preparation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this correspondence, we report on the first preparation of novel, robust Ru(bpy)(3)(2+)-containing supramolecular microstructures via a solution-based self-assembly strategy, carried out by directly mixing H2PtCl6 and Ru(bpy)(3)Cl-2 aqueous solutions at room temperature. It reveals that both the molar ratio and concentration of reactants have a heavy influence on the morphologies of such microstructures. The electrochemical behavior of the Ru(bpy)(3)(2+) components contained in the solid film of the microstructures formed on the electrode surface is also studied and found to exhibit a diffusion-controlled voltammetric feature. Most importantly, such microstructures exhibit excellent electrochemiluminescence (ECL) behaviors and therefore hold great promise as new luminescent materials for solid-state ECL detection in capillary electrophoresis (CE) or CE microchip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple and effective supramolecular route for facile synthesis of submicrometer-scale, hierarchically self-assembled spherical colloidal particles of adenine - gold(III) hybrid materials at room temperature. Simple mixture of the precursor aqueous solutions of adenine and HAuCl4 at room temperature could result in spontaneous formation of the hybrid colloidal particles. Optimization of the experimental conditions could yield uniform-sized, self-assembled products at 1:4 molar ration of adenine to HAuCl4. Transmission electron microscopy results reveal the formation of hierarchical self-assembled structure of the as-prepared colloidal particles. Concentration dependence, ratio dependence, time dependence, and kinetic measurements have been investigated. Moreover, spectroscopic evidence [i.e., Fourier transform infrared (FTIR) and UV-vis spectra and wide-angle X-ray scattering data] of the interaction motives causing the formation of the colloidal particles is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe herein the preparation of silver nanoparticles (AgNPs) using nucleobase adenine as protecting agent through the in situ chemical reduction of AgNO3 with NaBH4 in an aqueous medium at room temperature. As-prepared AgNPs were characterized by UV-visible spectra, transmission electron microscopy and x-ray photoelectron spectroscopy. All these data confirmed the formation of AgNPs. On the basis of electrostatic interactions between as-prepared AgNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AgNP)n (n = 0-9) multilayers on a 3-mercaptopropyltrimethoxysilane/AgNP functionalized indium tin oxide (ITO) substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-visible spectra. Furthermore, these ITO substrates coated with multilayers of different thickness were investigated as surface-enhanced Raman scattering (SERS)-active substrates using p-aminothiophenol as a probe molecule, implying that these multilayers substrates may be promising for a new type of SERS-active substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new process for the preparation of 3,5-dihydroxy-1-pentylbenzene, which is used as medicinal intermediate and raw material for the synthesis of HIV restrainer, is proposed in this paper. Technical 3,5-dimethoxybenzoic acid reacted with lithium hydride to form a salt (I) which acylated n-butyllithium directly to give 1-(3,5-dimethoxyphenyl)-1-pentanone (II) in 85.06% yield. Then (II) was reduced through a Wolff-K-Huangminglong reaction at 210 degrees C to give 3,5-dimethoxy-1-pentylbenzene (III). Finally, (III) refluxed with melt pyridine hydrochloride at 200 degrees C for 2 h to afford the target product 3,5-dihydroxy-1-pentylbenzene (IV). The total yield of (IV) amounted to 61.50% and its mass percentage was 98.22%. The products were characterized by means of IR, H-1-NMR, GC and HLPC-MS. The results indicated that this synthetic route was feasible, characterized by simple process and higher yield, and superior to the published ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel silver-gold bimetallic nanostructures were prepared by seeding with silver nanoplates in the absence of any surfactants. During the synthesis process, it was found that the frameworks of silver nanoplates were normally kept though the basal plane of silver nanoplates became rugged. The real morphology of these nanostructures depended on the molar ratio of gold ions to the seed particles. When the molar ratio of gold ions to silver atoms increased from 0.5 to 4, porous or branched silver-gold bimetallic nanostructures could be made. The growth mechanism was qualitatively discussed based on template-engaged replacement reactions and seed-mediated deposition reactions. Due to the unusual structures, they exhibited interesting optical properties. Moreover, they were shown to be an active substrate for surface-enhanced Raman scattering measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bulk alloy which consists of the single icosahedral quasicrystalline phase (I-phase) in Ti45Zr35Ni17CU3 alloy has been fabricated by mechanical alloying and subsequent pulse discharge sintering technique. Crystallographic structure analyses show that the bulk alloy is an I-phase. The transport properties of the bulk alloy are examined, and the results show that the room-temperature thermal conductivity is 5.347 W K-(1) m(-1), and the electrical conductivity decreases with increasing the temperature from 300 to 450K. The Seebeck coefficient is negative at the temperature range from 300 to 360K, and changes to positive from 370 to 450K. Hall effect measurements indicate the bulk I-phase alloy has a high carrier concentration. The specific heat capacity increases when the temperature increases from 280 to 324 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a one-pot preparation method for a series of novel shaped gold microcrystals by simply mixing HAuCl4 with disodium salt of ethylenediaminetetraacetic acid (Na(2)EDTA). Under the different reaction temperatures, spinous structures, multipod microspheres, and rough surfaced microspheres were obtained. These microcrystals exhibit high surface-enhanced Raman scattering (SERS) activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)-) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel oxidation and water stable sulfonated polyimides (SPIs) were synthesized from 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), and wholly aromatic diamine 2,2'-bis(3-sulfobenzoyl) benzidine (2,2'-BSBB) for proton exchange membrane fuel cells. These polyimides could be cast into flexible and tough membranes from m-cresol solutions. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendant groups. Moreover, all BTDA-based SPI membranes exhibited much better water stability than those based on the conventional 1,4,5,8-naphthalenecarboxylic dianhydride. The improved water stability of BTDA-based polyimides was attributed to its unique binaphthalimide structure. The SPI membranes with ion exchange capacity (IEC) of 1.36-1.90 mequiv g(-1) had proton conductivity in the range of 0.41 x 10(-1) to 1. 12 x 10(-1) S cm(-1) at 20 degrees C. The membrane with IEC value of 1.90 mequiv g(-1) displayed reasonably higher proton conductivity than Nafion((R)) 117 (0.9 x 10(-1) S cm(-1)) under the same test condition and the high conductivity of 0.184 S cm(-1) was obtained at 80 degrees C. Microscopic analyses revealed that well-dispersed hydrophilic domains contribute to better proton conducting properties. These results showed that the synthesized materials might have the potential to be applied as the proton exchange membranes for PEMFCs.