316 resultados para halo nuclei
Resumo:
The double neutron/proton ratio of nucleon emissions taken from two reaction systems using four isotopes of the same element, namely, the neutron/proton ratio in the neutron-rich system over that in the more symmetric system, has the advantage of reducing systematically the influence of the Coulomb force and the normally poor efficiencies of detecting low energy neutrons. The double ratio thus suffers less systematic errors. Within the IBUU04 transport model the double neutron/proton ratio is shown to have about the same sensitivity to the density dependence of nuclear symmetry energy as the single neutron/proton ratio in the neutron-rich system involved. The double neutron/proton ratio is therefore more useful for further constraining the symmetry energy of neutron-rich matter.
Resumo:
With the commissioning of the Cooler Storage Ring at the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR), a pilot experiment operating the CSRe in isochronous mode to test the power of HIRFL-CSR for measuring the mass of the short-lived nucleus was performed in December of 2007. The transition point gamma t of CSRe in isochronous mode is 1.395 which corresponds to the energy about 368 MeV/u for the ions with atomic number-to-charge ratio A/q = 2. The fragments with A/q = 2 of Ar-36 were injected into CSRe and their revolution frequencies were measured with a fast time pick-up detector with a thin foil in the circulating path of the ions. A mass resolution of better than 105 for m/Delta m was achieved.
Resumo:
A study of cooled Au-197 projectile-fragmentation products has been performed with a storage ring. This has enabled metastable nuclear excitations with energies up to 3 MeV, and half-lives extending to minutes or longer, to be identified in the neutron-rich nuclides Hf-183,Hf-184,Hf-186 and Ta-186,Ta-187. The results support the prediction of a strongly favored isomer region near neutron number 116.
Resumo:
Spectroscopic factors have been extracted for proton-rich Ar-34 and neutron-rich Ar-46 using the (p, d) neutron transfer reaction. The experimental results show little reduction of the ground state neutron spectroscopic factor of the proton-rich nucleus Ar-34 compared to that of Ar-46. The results suggest that correlations, which generally reduce such spectroscopic factors, do not depend strongly on the neutronproton asymmetry of the nucleus in this isotopic region as was reported in knockout reactions. The present results are consistent with results from systematic studies of transfer reactions but inconsistent with the trends observed in knockout reaction measurements.
Resumo:
Single-neutron-transfer measurements using (p,d) reactions have been performed at 33 MeV per nucleon with proton-rich Ar-34 and neutron-rich Ar-46 beams in inverse kinematics. The extracted spectroscopic factors are compared to the large-basis shell-model calculations. Relatively weak quenching of the spectroscopic factors is observed between Ar-34 and Ar-46. The experimental results suggest that neutron correlations have a weak dependence on the asymmetry of the nucleus over this isotopic region. The present results are consistent with the systematics established from extensive studies of spectroscopic factors and dispersive optical-model analyses of Ca40-49 isotopes. They are, however, inconsistent with the trends obtained in knockout-reaction measurements.
Resumo:
The high-spin level structure of Au-188 has been investigated via the Yb-173(F-19,4n gamma) reaction at beam energies of 86 and 90 MeV. The previously reported level scheme has been modified and extended significantly. A new I-pi = 20(+) state associated with pi h(11/2)(-1) circle times nu i(13/2)(-2)h(9/2)(-1) configuration and two new rotational bands, one of which is built on the pi h(9/2) circle times nu i(13/2) configuration, have been identified. The prolate-to-oblate shape transition through triaxial shape has been proposed to occur around Au-188 for the pi h(9/2) circle times nu i(13/2) bands in odd-odd Au isotopes. Evidence for pi h(11/2)(-1) circle times nu i(13/2)(-1) structure of nonaxial shape with gamma < -70 degrees has been obtained by comparison with total Routhian surface and cranked-shell-model calculations.
Resumo:
Recent experimental data have revealed large mirror energy differences (MED) between high-spin states in the mirror nuclei Se-67 and As-67, the heaviest pair where MED have been determined so far. The MED are generally attributed to the isospin symmetry breaking caused by the Coulomb force and by the isospin-nonconserving part of the nucleon-nucleon residual interaction. The different contributions of the various terms have been extensively studied in the fp shell. By employing large-scale shell-model calculations, we show that the inclusion of the g(9/2) orbit causes interference between the electromagnetic spin-orbit and the Coulomb monopole radial terms at high spin. The large MED are attributed to the aligned proton pair excitations from the p(3/2) and f(5/2) orbits to the g(9/2) orbit. The relation of the MED to deformation is discussed.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.
Resumo:
Equilibration and equilibration rates have been measured by colliding Sn nuclei with different isospin asymmetries at beam energies of E/A = 35 MeV. Using the yields of mirror nuclei of Li-7 and Be-7, we have studied the diffusion of isospin asymmetry by combining data from asymmetric Sn-112 + Sn-124 and Sn-124 + Sn-112 collisions with those from symmetric Sn-112 + Sn-112 and Sn-124 + Sn-124 collisions. We use these measurements to probe isospin equilibration in central collisions where nucleon-nucleon collisions are strongly blocked by the Pauli exclusion principle. The results are consistent with transport theoretical calculations that predict a degree of transparency in these collisions, but inconsistent with the emission of intermediate mass fragments by a single chemically equilibrated source. Comparisons with quantum molecular dynamics calculations are consistent with results obtained at higher incident energies that provide constraints on the density dependence of the symmetry energy.
Resumo:
The proton-neutron interaction in determining the evolution of nuclear structure has been studied by using the Brillouin-Wigner perturbation expansion. The particle-hole and particle-particle p-n interactions are unifiedly described in the theory. The obtained formulas of level energies and excitation energies scaled in the small- and large-NpNn limits can well explain the linearity of the extracted proton-neutron interaction energies and the attenuation of the 2(1)(+) excitation energies against the valence nucleon product NpNn for five mass regions from A = 100-200.
Resumo:
Recent experiments have reached the neutron-rich Cr isotope with N = 40 and confirmed enhanced collectivity near this subshell. The current data focus on low-spin spectroscopy only, with little information on the states where high-j particles align their spins with the system rotation. By applying the projected shell model, we show that rotation alignment occurs in neutron-rich even-even Cr nuclei as early as spin 8 (h) over bar h and, owing to shell filling, the aligning particles differ in different isotopes. It is suggested that observation of irregularities in moments of inertia is a direct probe of the deformed single-particle scheme in this exotic mass region.
Resumo:
The high spin levels of a very neutron-rich Zr-104 nucleus have been reinvestigated by measuring the prompt. rays in the spontaneous fission of Cf-252. The ground-state band has been confirmed. A new sideband has been identified with a band-head energy at 1928.7 keV. The projected shell model is employed to investigate the band structure of Zr-104. The results of calculated levels are in good agreement with the experimental data, and suggest that the new band in Zr-104 may be based on the neutron nu 5/2(-)[532] circle times nu 3/2(+)[411] configuration.
Resumo:
The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes No252-254 were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a Ca-48 beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.
Experimental study of the U-238(S-36,3-5n)(269-271)Hs reaction leading to the observation of (270)Hs
Resumo:
The deformed doubly magic nucleus (270)Hs has so far only been observed as the four-neutron (4n) evaporation residue of the reaction Mg-26+Cm-248, where a maximum cross section of 3 pb was measured. Theoretical studies on the formation of (270)Hs in the 4n evaporation channel of fusion reactions with different entrance channel asymmetry in the framework of a two-parameter Smoluchowski equation predict that the reactions Ca-48+Ra-226 and S-36+U-238 result in higher cross sections due to lower reaction Q values, in contrast to simple arguments based on the reaction asymmetry, which predict opposite trends. Calculations using HIVAP predict cross sections for the reaction S-36+U-238 that are similar to those of the Mg-26+Cm-248 reaction. Here, we report on the first measurement of evaporation residues formed in the complete nuclear fusion reaction S-36+U-238 and the observation of (270)Hs, which is produced in the 4n evaporation channel, with a measured cross section of 0.8(-0.7)(+2.6) pb at 51-MeV excitation energy. The one-event cross-section limits (68% confidence level) for the 3n, 4n, and 5n evaporation channels at 39-MeV excitation energy are 2.9 pb, while the cross-section limits of the 3n and 5n channel at 51 MeV are 1.5 pb. This is significantly lower than the 5n cross section of the Mg-26+Cm-248 reaction at similar excitation energy.
Resumo:
An experiment to study exotic two-proton emission from excited levels of the odd-Z nucleus P-28 was performed at the National Laboratory of Heavy Ion Research-Radioactive Ion Beam Line (HIRFL-RIBLL) facility. The projectile P-28 at the energy of 46.5 MeV/u was bombarding a Au-197 target to populate the excited states via Coulomb excitation. Complete-kinematics measurements were realized by the array of silicon strip detectors and the CsI + PIN telescope. Two-proton events were selected and the relativistic-kinematics reconstruction was carried out. The spectrum of relative momentum and opening angle between two protons was deduced from Monte Carlo simulations. Experimental results show that two-proton emission from P-28 excited states less than 17.0 MeV is mainly two-body sequential emission or three-body simultaneous decay in phase space. The present simulations cannot distinguish these two decay modes. No obvious diproton emission was found.