226 resultados para constrained efficiency
Resumo:
In the invading course of Undaria pinnatifida, zoospore attachment in a dynamically changed subtidal water environment is crucial for the establishment of a potential population in alien waters. Among many abiotic factors that may interfere with the attachment process, water velocity is the most important one. In this investigation, the effect of water velocity on zoospore attachment of U. pinnatifida was investigated in an artificially designed system. It was found that freshly released zoospores that were transported by water flowing at 0 similar to 16 cm/s showed no difficulty in attaching the smooth surface. Zoospore attachment decreased at elevated water flowing rates. At 70 cm/s no spore attachment occurred. Spores that have settled on glass slide for up to I h could not be stripped away by flowing water at a rate of 129 cm/s, the same was true of the 20 d old filamentous gametophytes. It was found that more than 70% of free-swimming zoospores tended to settle down adjacent to the settled spores and formed conjugated clusters from two up to a few hundred cells in still culture.
Resumo:
The extracts obtained from 28 species of marine algae were evaluated for their antioxidant activity (AA) versus the positive controls butylated hydroxytoluene (BHT), gallic acid (GA), and ascorbic acid (AscA). Most of the tested samples displayed antioxidant activity to various degrees. Among them, the extract of Symphyocladia latiuscula exhibited the strongest AA, which was comparable to BHT, GA, and AscA in radical scavenging activity, as shown in the DPPH (alpha,alpha-diphenyl-beta-picrylhydrazyl) assay, and higher than those of the positive controls in beta-carotene-linoleate assay system. In addition, the ethyl acetate-soluble fraction isolated from the crude extract of S. latiuscula exhibited the highest antioxidant activity in both assay systems. This fraction was further fractionated into seven subfractions (F1-F7) by vacuum liquid chromatography (VLC). F1 and F4 were found to be the most effective subfractions in scavenging DPPH radical assay and in the beta-carotene-linoleate assay, respectively. The total phenolic content (TPC) and reducing power (RP) for all of the extracts, fractions, and subfractions (F1-F7) were also determined. The TPC of the 28 extracts ranged from 0.10 to 8.00 gallic acid equivalents (mg/g seaweed dry weight) while the RP ranged from 0.07 to 11.60 ascorbic acid equivalents (mg center dot g(-1) seaweed dry weight). Highly positive relationships between AA and TPC as well as between AA and RP were found for the extracts and fractions, while for the subfractions F1-F7 only weak or no such relations were found. The results obtained from this study indicate that further analysis is needed of those marine algal species that contain the most antioxidant activity in order to identify the active principles.
Resumo:
Bottom-simulating reflectors (BSRs) were observed beneath the seafloor in the northern continental margin of the South China Sea (SCS). Acoustic impedance profile was derived by Constrained Sparse Spike Inversion (CSSI) method to provide information on rock properties and to estimate gas hydrate or free gas saturations in the sediments where BSRs are present. In general, gas hydrate-bearing sediments have positive impedance anomalies and free gas-bearing sediments have negative impedance anomalies. Based on well log data and Archie's equation, gas hydrate saturation can be estimated. But in regions where well log data is not available, a quantitative estimate of gas hydrate or free gas saturation is inferred by fitting the theoretical acoustic impedance to sediment impedance obtained by CSSI. Our study suggests that gas hydrate saturation in the Taixinan Basin is about 10 - 20% of the pore space, with the highest value of 50%, and free gas saturation below BSR is about 2 - 3% of the pore space, that can rise to 8 - 10% at a topographic high. The free gas is non-continuous and has low content in the southeastern slope of the Dongsha Islands. Moreover, BSR in the northern continental margin of the SCS is related to the presence of free gas. BSR is strong where free gas occurs.
Resumo:
The effects of feeding level on growth, retention efficiency, faeces production and energy partitioning of redlip mullet were studied. A practical diet was used and fed at six levels from starvation, 1%, 2%, 3%, 4% of body weight (BW) to satiation for 3 weeks. The temperature was kept at 24 +/- 1 degrees C. Reducing the feeding amount resulted in significantly lower weight gain, and retention efficiency was significantly affected by feeding levels and attained the maximum at maximum feeding intake. Feeding 2% BW was the minimum required for fish to maintain growth. Fish carcass composition under different feeding levels could be divided into three groups: (1) starvation and FL1; (2) FL2 and FL3 and (3) FL4 and satiation, with significant differences among the groups but no differences in the groups except that ash content remained at constant value. Body composition of fish of group 2 was close to initial fish. The thermal-unit coefficient was 0.0381 at satiation, and significantly increased with increasing feeding levels. In order to accurately estimate basal metabolism (HeE), another trial on the relationship between HeE (kJ) and BW (g) was carried out. An exponential curve as HeE=0.1255BW(0.8386) explained this relationship. Intake energy (IE) increased from 11.30 to 63.08 kJ per fish, matching with different feeding levels. Energy allocated to growth of IE decreased with reducing feeding amount. There was a linear relationship between metabolism energy and retention energy in percentage.
Resumo:
The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66 degrees N between 15 and 20 degrees W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chla concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved.
Resumo:
Grey interrelation analysis method was used to study the correlation of Al-anode elements and its galvanic efficiency at 20 degreesC, 40 degreesC and 60 degreesC. Twenty-eight kinds of Al-anodes were made for experiments by the method given by Chinese National Standard GB4948-85 [1] and the correlation degree of elements added in the anodes were calculated. The results showed that the order of elements affecting galvanic efficiency at different temperature is basically the same, and the correlation degree can reflect the variation of Al-anode galvanic efficiency when changing temperature. It is suggested that the elements being added in Al-anode are Zn, In, Ga, Mg.
Resumo:
Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.
Resumo:
研究资源受限系统动态调度问题,针对时序约束问题提出一种并行遗传算法(PGA)。给出满足排序优先次序约束的一种基因编码方法;采用不破坏优先级可行性的交叉操作,并予以证明;建立一种并行处理机制,使搜索避免出现局优现象。在技术允许情况下,单机动态调度引入抢占式加工方式,会一定程度上提高系统的性能。通过仿真试验验证,并行GA算法可兼顾优化效果和计算效率,解决单机动态调度问题。
Resumo:
An high-resolution prestack imaging technique of seismic data is developed in this thesis. By using this technique, the reflected coefficients of sheet sands can be gained in order to understand and identify thin oil reservoirs. One-way wave equation based migration methods can more accurately model seismic wave propagation effect such as multi-arrivals and obtain almost correct reflected energy in the presence of complex inhomogeneous media, and therefore, achieve more superiorities in imaging complex structure. So it is a good choice to apply the proposed high-resolution imaging to the presatck depth migration gathers. But one of the main shorting of one-way wave equation based migration methods is the low computational efficiency, thus the improvement on computational efficiency is first carried out. The method to improve the computational efficiency of prestack depth migration is first presented in this thesis, that is frequency-dependent varying-step depth exploration scheme plus a table-driven, one-point wavefield interpolation technology for wave equation based migration methods; The frequency-dependent varying-step depth exploration scheme reduces the computational cost of wavefield depth extrapolation, and the a table-driven, one-point wavefield interpolation technology reconstructs the extrapolated wavefield with an equal, desired vertical step with high computational efficiency. The proposed varying-step depth extrapolation plus one-point interpolation scheme results in 2/3 reduction in computational cost when compared to the equal-step depth extrapolation of wavefield, but gives the almost same imaging. The frequency-dependent varying-step depth exploration scheme is presented in theory by using the optimum split-step Fourier. But the proposed scheme can also be used by other wave equation based migration methods of the frequency domain. The proposed method is demonstrated by using impulse response, 2-D Marmousi dataset, 3-D salt dataset and the 3-D field dataset. A method of high-resolution prestack imaging is presented in the 2nd part of this thesis. The seismic interference method to solve the relative reflected coefficients is presented. The high-resolution imaging is obtained by introducing a sparseness- constrained least-square inversion into the reflected coefficient imaging. Gaussian regularization is first imposed and a smoothed solution is obtained by solving equation derived from the least-square inversion. Then the Cauchy regularization is introducing to the least-square inversion , the sparse solution of relative reflected coefficients can be obtained, that is high-resolution solution. The proposed scheme can be used together with other prestack imaging if the higher resolution is needed in a target zone. The seismic interference method in theory and the solution to sparseness-constrained least-square inversion are presented. The proposed method is demonstrated by synthetic examples and filed data.
Resumo:
Conventional 3D seismic exploration cannot meet the demand of high yield and high efficiency safe production in coal mine any more. Now it is urgent to improve the discovery degree of coal mine geological structures for coal production in China. Based on 3D3C seismic exploration data, multi-component seismic information is fully excavated. First systematic research on 3D3C seismic data interpretation of coal measure strata is carried out. Firstly, by analyzing the coal measure strata, the seismic-geologic model of coal measure strata is built. Shear wave logging is built by using regression analysis. Horizon calibration methods of PP-wave and PS-wave are studied and the multi-wave data are used together to interpret small faults. Using main amplitude analysis technology, small faults which cannot be found from PP-wave sections can be interpreted from the low frequency PS-wave sections. Thus, the purpose to applying PS-wave data to fine structure assistant interpretation is achieved. Secondly, PP- and PS-wave post-stack well constrained inversion methods of coal measure strata are studied. Joint PP- and PS-wave post-stack inversion flow is established. More attribute parameters, which are applied in fine lithology interpretation of coal measure strata, are obtained from combinations of the inversion results. Exploring the relation between rock with negative Poisson’s ratio and anisotropy, fracture development in coal seam are predicted. Petrophysical features of coal measure strata are studied, and the relations between elastic parameters and lithology, fluid and physical properties are established. Inversions of the physical parameters such as porosity, permeability and water saturation, which reflect lithology and fluid property, are obtained. Finally, the approaches of shear wave splitting and Thomsen parameters inversion, which provide new ideas for seismic anisotropy interpretation of coal measure strata, are studied to predict fracture development. The results of practical application indicate that the methods in this paper have good feasibility and applicability. They have positive significance for high yield and high efficiency safe production in coal mine.
Resumo:
Since C.L. Hearn presented the concept of flow unit in 1984, its generation mechanisms and controlling factors have been studied in many aspects using different methods by researchers. There are some basic methods to do the research, and there are several concepts and classification standards about flow unit. Based on previous achievements and using methodologies from sedimentary geology, geophysics, seismic stratigraphy, and reservoir engineering, the author systemically studies the factors controlling flow unit, puts forward a series of methods for recognition, classification and evaluation of flow unit. The results obtained in this paper have important significance not only for understanding the flow unit, but also for revealing the distribution of remaining oil. As a case, this paper deals with the reservoir rocks in Guantao Group of Gudong Oilfield. Zhanhua Sag, Jiyang Depression in Bohaiwan Basin. Based on the study of stratigraphic, depositional and structural characteristics, the author establishes reservoir geological models, reveals the geological characteristics of oil-bearing reservoir of fluvial facies, points out the factors controlling flow unit and geological parameters for classification of flow unit. and summarizes methods and technologies for flow unit study when geological, well-logging and mathematical methods are used. It is the first attempt in literatures to evaluate reservoir by well-logging data constrained by geological conditions, then a well-logging evaluation model can be built. This kind of model is more precise than ever for calculating physical parameters in flow unit. In a well bore, there are six methods to recognize a flow unit. Among them, the activity function and intra-layer difference methods are the most effective. Along a section, the composition type of flow unit can be located according amplitude and impedance on seismic section. Slice method and other methods are used to distinguish flow unit. In order to reveal the distribution laws of flow unit in space, the author create a new method, named combination and composition of flow unit. Based on microscopic pore structure research, the classification methods of flow unit are developed. There are three types of flow unit in the reservoir of fluvial facies. They have their own lithology, petrophysics and pore structure character. Using judgement method, standard functions are built to determine the class of flow unit of fluvial facies. Combining reservoir engineering methods, the distribution laws of remaining oil in different types, or in different part of a flow unit are studied. It is evident that the remaining oil is controlled by the type of flow unit. The author reveals the relationship between flow unit and remaining oil distribution, builds the flowing models, predicts the variation of reservoir parameters in space, put forward different methods developing remaining oil in different flow unit. Especially, based on the results obtained in this paper, some suggestions for the adjustment of the developing flow units have been applied in Districts No.4 and No.7, and good results have been yielded. So, the results of this paper can guide oil field development. They are useful and significant for developing the remaining oil and enhancing the oil recovery efficiency.