255 resultados para algal crust


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the first arrival of seismic phase in deep seismic sounding, Pg is the important data for studying the attributes of the sedimentary layers and the shape of crystalline basement because of its high intensity and reliable detection. Conventionally, the sedimentary cover is expressed as isotropic, linear increasing model in the interpretation of Pg event. Actually, the sedimentary medium should be anisotropic as preferred cracks or fractures and thin layers are common features in the upper crust, so the interpretation of Pg event needs to be taken account of seismic velocity anisotropy. Traveltime calculation is the base of data processing and interpretation. Here, we only study the type of elliptical anisotropy for the poor quality and insufficiency of DSS data. In this thesis, we first investigate the meaning of elliptical anisotropy in the study of crustal structure and attribute, then derive Pg event’s traveltime-offset relationship by assuming a linear increasing velocity model with elliptical anisotropy and present the invert scheme from Pg traveltime-offset dataset to seismic velocity and its anisotropy of shallow crustal structure. We compare the Pg traveltime calculated by our analytic formula with numerical calculating method to test the accuracy. To get the lateral variation of elliptical anisotropy along the profiling, a tomography inversion method with the derived formula is presented, where the profile is divided into rectangles. Anisotropic imaging of crustal structure and attribute is efficient method for crust study. The imaging result can help us interprete the seismic data and discover the attribute of the rock to analyze the interaction between layers. Traveltime calculation is the base of image. Base on the ray tracing equations, the paper present a realization of three dimension of layer model with arbitrary anisotropic type and an example of Pg traveltime calculation in arbitrary anisotropic type is presented. The traveltime calculation method is complex and it only adapts to nonlinear inversion. Perturbation method of travel-time calculation in anisotropy is the linearization approach. It establishes the direct relation between seismic parameters and travetime and it is fit for inversion in anisotropic structural imaging. The thesis presents a P-wave imaging method of layer media for TTI. Southeastern China is an important part of the tectonic framework concerning the continental margin of eastern China and is commonly assumed to comprise the Yangtze block and the Cathaysia block, the two major tectonic units in the region. It’s a typical geological and geophysical zone. In this part, we fit the traveltime of Pg phase by the raytracing numerical method. But the method is not suitable here because the inefficiency of numerical method and the method itself. By the analytic method, we fit the Pg and Sg and get the lateral variation of elliptical anisotropy and then discuss its implication. The northeastern margin of Qinghai-Tibetan plateau is typical because it is the joint area of Eurasian plate and Indian plate and many strong earthquakes have occurred there in recent years.We use the Pg data to get elliptical anisotropic variation and discuss the possible meaning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of the continental crust has long been a subject of interest to earth scientists as it can provide key information about the crustal growth and evolution of the continents. In this paper we make a comparative study on the lithological discrimination schemes featuring with the use of different seismic attributes, such as P-wave velocity, P- to S-wave velocity ratio, acoustic or elastic impedances, Lame impedances and high-sensitive identification factors. The results demonstrate that Lame impedances have more powerful constrains than other seismic attributes. In order to fully take the advantage of make the best of the different seismic response of crustal rock, we firstly use seismic attribute that have weak distinguish power to construct loose constrained lithological model, then use seismic attributes that have stronger distinguish power to tighten the constrains of lithological discrimination. We propose a joint scheme (chain constrain technique) by combing all available constrains to reduce the non-uniqueness in mapping rock distribution. We adopt chain constrain technique to construct lithological model beneath Tunxi-Wenzhou transect, Southeastern China, Manzhouli-Suifenhe transect, Northeastern China, and geophysical profile in Bohai Bay Basin, North China. The results can be suumarized as the follows: (1) We compare the sensitivity of different seismic factor constraints on rock types, and conclude that Lame impedances have tighter constrains than seismic velocity, Vp/Vs, density. (2) We propose chain constrains to construct lithological model from integrated geophysical data, and reduce the non-uniqueness in mapping rock distribution. (3) We reconstruct crustal lithological model beneath Tunxi-Wenzhou transect, Southeastern China. The results suggested that Jiangshan-Shaoxing fault is a crust-scale, and it is the boundary between Cathaysia and Yanthze blocks. (4) We construct crustal lithological model beneath Manzhouli-Suifenhe transect, Northeastern China. (5) We map the petrologic distribution along a geophysical profile in Bohai Bay Basin, North China, and construct a three-layered petrology model from the depth 2 km to about 10 km, consisted of basalt (the first layer), pelitic siltstone (the second layer), and silty mudstone and fine sandstone (the third layer).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The West Shandong Uplift and its adjacent basins, with same evolutional history before Mesozoic, are an important basin-orogenic systems in North China. After late Mesozoic, tectonic differentiation between basin and orogenic belt gradually displayed in the study area. The Boxing sag is a part of Jiyang Depression near to West Shandong Uplift, in which the whole Mesozoic and Cenozoic strata are preserved. Based on the analysis of sedimentary records in the Boxing sag, the Cenozoic structural and sedimentary evolutions in Boxing Sag and its response to Western Shandong uplift are discussed in this dissertation. The main conclusions in this research are presented as follows. Based on Seismic and well logging profile interpretation, fault growth index, thickness difference between bottom wall and top wall and fault activity rate from Eocene to Pliocene are studied. Boxing sag had three main faults, NE, NW and NEE trending faults. Research shows that the activity of the NW trending fault in the Boxing sag became weaken from E1-2S4 to N2m gradually. The evolution of NE and the NEE trending fault can be divided into three episodes, from E1-2k to E2s4, from E2s3 to E3s1, from N2m to E3d. The analysis of Paleogene samples of heavy mineral assemblages shows that metamorphic rocks represented by garnet, intermediate-acid igneous rocks represented by the assemblage of apatite, zircon and tourmaline became less from E1-2k to N2g, and sedimentary rocks represented by the assemblage of pyrite, barite and limonite also became less. Intermediate-basic igneous rocks represented by the assemblage of leucoxene, rutile and ilmenite and metamorphic rocks represented by epidote became more and more. Electronic microprobe analysis shows that glaucophane and barroisite are existed in Kongdian Formation and the 4th member of Shahejie Formation, and they demonstrate that Western Shandong and Eastern Shandong are all the source regions of the Boxing Sag, and they also indicate that oceanic crust existed before the collision between the Yangtze and North China continent. The fact that Eastern Shandong is the source region of Boxing Sag also indicates that Western Shandong was not high enough to prevent sediment from Eastern Shandong at E1-2k and E2s4. The results of the dating of five detrital zircons of Boxing Sag show Kongdian Formation and the 4th member of Shahejie Formation have the age peaks of 2800Ma and 700-800. It means that Eastern Shandong is the source region of Boxing Sag at early Paleogene and Western Shandong is not high enough to prevent the sediment from Eastern Shandong. The ages of 160-180 and 220-260 Ma, which exist in the Guantao Formation and Paleogene, are common in Eastern Shandong and rare in Western Shandong,and it implied that Western Shandong is a low uplift at 24Ma. The Paleogene strata have almost same age groups, while the Guantao Formation has significant variations of age groups, and this indicates that Boxing Sag and Western Shandong uplift had taken place tremendous changes. The results of apatite fission track in Boxing sag show that three times uplifts happened at the source region at 60 Ma, 45Ma and 15Ma respectively, and the Boxing sag experienced two subsidences at 60Ma, 45Ma and one uplift at 20Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the Devonian, a complicated carbonate platform-basin configuration was created through transtensional rifting in the context of opening of Devonian South China Sea; extensive bedded chert, commonly interbedded with tuffaceous beds, occurred in the narrow, elongate interplatform basins (or troughs) in South China, where they occurred earlier (Early Devonian) in southern Guangxi and later (early Late Devonian) in northern Guangxi-south central Hunan. In order to unravel the origin and distribution of the bedded chert successions, and their relationships to basement faulting activities during the opening of the Devonian South China Sea, studies of element (major, minor and REE) geochemistry and Rb-Sr, Sm-Nd isotopic systematics are carried out upon the chert deposits. These chert deposits commonly have high SiO2 contents and (average 94.01%) and low TFe2O3 (average 0.55%), together with other geochemical parameters, suggestive of both biogenic and hydrothermal origins. However, Fe/Ti ratio are high along the elongate interplatform basins(troughs) to the northwest along Wuxiangling-Zhaisha-Chengbu, and to the southeast along Xiaodong-Mugui-Xinpu, suggesting relatively intense hydrothermal activities there. They generally contain very low total REE contents (∑REE average 31.21ug/g) with mediate negative Ce anomalies (mean Ce/Ce*=0.83) and low Lan/Cen values (average 1.64), indicating an overall continental margin basin where they precipitated. The northward increases in Ce/Ce* values, particularly along the elongate troughs bounded both to the east and west of the Guangxi-Huanan rift basin, suggest a northward enhancement of terrigenous influences, thereby reflecting a gradual northward propagation of open marine setting. Generally low positive Eu anomalies in the chert, except for the apparently high Eu anomalies in the chert from Chengbu (Eu/Eu* up to 4.6), suggest mild hydrothermal venting activities in general, except for those at Chengbu. The initial 87Sr/86Sr (0) ratios of chert generally vary from 0.712000 to 0.73000 , suggesting influences both from terrigenous influx and seawater. The Nd isotopic model ages (tDM or t2DM) and initial εNd (0) values of chert vary mostly from 1.5 to 2.1 Ga, and from –16 to –21, respectively, implying that the silica sources were derived from the provenances of the Palaeoproterozoic crust relics at depth. The high εNd (0) values of chert (-0.22 to 14.7) in some localities, mostly along the elongate troughs, suggest that silica sources may have been derived from deeper-seated mantle, being channeled through the interplate boundary fault zones extending downwards to the mantle. At Wuxiangling, Nanning, chert occurs extensively from the Emsian through the Frasnian strata, both U/Th ratios and tDM ages of chert reached up to a maximum in the early Frasnian corresponding to the extensive development of chert in South China, pointing to a maximum extensional stage of Devonian South China basin, which is supported by the Ce/Ce* values as is opposed to the previous datasets as the coeval minimum values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tazhong-Bachu region is located in the Western Tarim basin.The early Permian magmatic rocks occur in the earth surface of Tazhong-Bachu region are mainly distributed in Kepintag,Mazhartag and Wajilitag region. There are a lot of wells, in which researchers found the early Permian magmatic rocks,in desert cover area.Most magmatic rocks are basic rocks, a few of which are ultrabasic rocks and intermediate-acid magmatic rocks.The ultrabasic rocks are are mainly occur in the Cryptoexplosive Breccia Pipes ,which is located in the volcanic complex body of Wajilitag region.The basic rocks can be divided into three rock types:The first type of the magmatic rocks in Tazhong-Bachu region is volcanic rock ,which occurs in the Lower Permian Kupukuziman Formation and Kaipaizileike Formation. Most Volcanic rocks are basalts,a few of which are volcanic breccias and pyroclastic rocks.The basalts are distributed in stratiform occurrences and interbeded the clastic rocks in Kepintag region.The attitudes of the basalts are nearly horizontal.Columnar Joints, gas pore textures and amygdaloidal structure are to develop in basalts.The second type of the magmatic rocks in Tazhong-Bachu region is diabase,which occurs in Mazhartag region.Diabase dike swarms occur in the stratums of Silurian, Devonian, Carboniferous and Lower Permian.They make from NNW direction to SSE direction, the obliquity of stratum is greater than 60°, and the dike thickness is form several cm to several meters. Diabasic texture is found in the rocks .The first type of the magmatic rocks in Tazhong-Bachu region are gabbro- pyroxenite rocks ,which occur in the Wajilitag igneous complex body. The intermediate-acid magmatic rocks, which are mainly syenites, are located in Mazhartag and Wajiltag region. But they are small in the whole Tazhong-Bachu region.There are intermediate-acid magmatic rocks,which are mainly dacite,in the northeast part of the wells in Tazhong-Bachu region.But ,it is not found in earth surface.Through systematical geochemical research of early Permian magmatic rocks,which are distributed in Kepintag,Mazhartag, Wajilitag region and the wells such as F1 well、Z1 well、Z13 well、TZ18 well、H3 well、H4 well et al., the focus on the geochronologic characteristics, the main element,trace element and REE geochemistry, the mineralogic characteristics, the Sr-Nd and Pb isotopic characteristics are put forward. The main points are: 1、A combined study of CL imaging and LA-ICP-MS U-Pb dating were carried out for zircon grains of the magmatic rocks in the Tazhong-Bachu region from the Tarim basin.The results of the systematic zircon LA-ICP-MS U-Pb dating reveal 272±6Ma to 291±10Ma for the magamatic rocks. It indicated that Early Permian is an important period of magmatic acvivity in the Tazhong-Bachu region. 2、There are a big hunch in the curves of primitive mantle-normalized trace element concentrations in the early Permian magmatic rocks from Kepintag, Mazhartag, Wajilitag region and the 14 wells. Light rare earth elements are comparatively rich and heavy rare earth elements are comparatively poor. The slope rates are same between light rare erath elements and heavy rare earth elements. It is not like the curves of the basalts in the convergent margin of plate , in which the slope rates of light rare erath elements is bigger than the alope rates of heavy rare erath elements, and the curves of heavy rare earth elements are comparatively flat. The magmatic rocks of Tazhong-Bachu region rarely have the characteristics of the basalts in the convergent margin of plate, which is that Tantalum, Niobium and Titanium are much poor, and Zirconium, Hafnium and Phosphorus are moderately poor. The magamatic rocks are mostly alkaline, which is indicated by the dots of the (Na2O+K2O)-SiO2 identification diagram. All of these indicate that the early Permian magmatic rocks were formed in an extension environment of intraplate. 3、The Thorium abundance is high and Tantalum abundance is low in most magmatic rocks from Tazhong-Bachu reguion, which is formed for crustal contamination.In the Th/Yb-Ta/Yb identification diagram,most dots are in the region, which means active continental margin, but a few dots are in the region, which means mantle source. It indicated the feeding of continental crust materials. 4、The magnesium content of the olvines from Wagilitag region is richest, and the olvines from Kepintag region is poorest in the tree region. 5、Through the the Sr-Nd and Pb isotopic study of the basalts and diabases from the F1 well core, Z1 well core, Z13 well core,TZ18 well core, and the basalts,gabbros, diabases(diabase-prophyrites) and pl-peridotites from Kepintag,Mazhartag, Wajilitag region , it indicated that all isotopic data is similar and close to enriched mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis mainly concentrates on the geochronology, prtrology, elemental geochemistry and Sr-Nd-Pb-Hf isotopic geochemistry of the volcanic rocks in north Da’Hinggan Mountain. By analyzing the data obtained in this study and data from other people, this thesis explored the age distribution, petrology and mineralogy and geochemistry characteristics of the volcanic rocks in north Da’Hinggan Mountain. Furthermore, this thesis speculated upon the source characteristics of these volcanic rocks and their implications for the tectonic evolution and crust accretion. According to the twenty Ar-Ar ages, four zircon U-Pb SHRIMP ages and two Zircon U-Pb LA-ICP-MS ages, the duration of the eruption of the Late Mesozoic volcanic rocks in north Da’Hing Mountain was about 160Ma-106Ma. Most of these volcanic rocks belong to early Cretaceous and the late Jurassic volcanic rocks are only restricted in Manzhouli. The bulk of the late Mesozoic volcanic rocks are high-K calc-alkaline rocks. Only a small portion of these volcanic rocks are shoshonites. These rocks are mainly intermediate or acid and the basic rocks usually have higher alkaline contents. Rock types are very complex in this region. These volcanic rocks have a large TiO2 variation and the Al2O3 and alkaline contents are high. From the point of mineralogy, the plagioclases in these volcanic rocks are oligoclases, andesines and labradorites, and the labradorites are more common. Most pyroxenes in these volcanic rocks are augites which belong to clinopyroxene. The source of the Late Mesozoic volcanic rocks was an enriched lithospheric mantle. When the magma en route to the surface it was contaminated by crust material slightly and had some fractional crystallization. These rocks which mainly belong to high-K calc-alkaline series were one of the results of postorogenic tectonic-magmatic activities. The upwelling in late Mesozoic supplied heat to melt the enriched lithospheric mantle which was resulted from the subduction of paleo-Asian Ocean and/or Mengol-Okhotsk ocean. These late Mesozoic volcanic rocks are also important to the upper crustal accretion of north Da’Hinggan Mountain since the late Mesozoic. These volcanics and the contemporary emplacement of granites and the basaltic underplating in combination fulfilled the crust accretion history in north Da’Hinggan Mountain in Late Mesozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Central Asian Orogen Belt (CAOB), which is different from the subductional orogen and the collisional orogen, is known as the most important site of crustal growth in the Phanerozoic, and it has been a ‘hot spot’ for studying the orogenic belts. The Chinese West Tianshan Orogen is occupying the west-southern part of the CAOB and is of great importances to understand the orogenic processes and the continental growth in the Central Asia. The West Tianshan Orogen had undergone complex tectonic evolutional processes in Paleozoic times and large volumes granitic rocks have recorded important information about these processes. Litter is known about Phanerozoic continental growth in the Western Tianshan area so far, compared with the other areas of the CAOB, such as eastern Junggar, western Junggar, Altai and Alakol. The aim of this dissertation is to set up the chronology frame of granitoids in western Tianshan, provide new evidence for the tectonic evolution and discuss the Paleozoic continental growth in this area, on the basis of the studies on the isotopic chronology, major element, trace element and Nd-Sr isotopic geochemistry of granitoids and the isotopic chronology and geochemistry of the ophiolites in this area, especially the Kule Lake ophiolites. 25 precise SHRIMP U-Pb zircon and LA-ICPMS U-Pb zircon ages have been obtained in this dissertation. The granitic rocks in western Tianshan had been formed during two periods: the granitic gneiss with an age of 896Ma, possibly representing the forming age of the Precambrian basement; the granitic rocks with ages varying from 479Ma to 247Ma, recording the Paleozoic orogenic process of western Tianshan. The granitoids in western Tianshan are composed of intermediate-basic rocks, intermediate rocks, intermediate-acid rocks and acid rocks, mainly intermediate-acid rocks and acid rocks. They are mostly granite, granodiorite, quartz syenite and monzodiorite. Different types of granitic rocks are exposed in different tectonic units. The granitoids on the northern margin of the Yili Plate mainly formed in late Paleozoic (413Ma ~ 281Ma), those with ages varying from 413Ma to 297Ma show continental arc affinities and the magnesian calc-alkalic metaluminous diorite of 281Ma display the geochemical characteristics similar to those of granites formed during the post-orogenic period. The granitiods on the southern margin of the Yili Plate include the adakite diorite of 470Ma which was formd by partial melting of thickened lower crust, the post-collisional alkali-feldspar granite of 430Ma, the volcanic arc granite of 348Ma and the Triassic post-collisional granite. The granitoids in the Central Tianshan Plate formed in 479Ma ~ 247Ma, mainly in 433Ma ~ 321Ma. The granitic rocks with ages of 479Ma ~ 321Ma are magnesian calc-alkalic to alkalic rocks with continental arc affinities. A few post-collisional granitoids of 276Ma ~ 247Ma may have inherited the geochemical characteristics of pre-existing arc magma. The granitic rocks in Southern Tianshan (northern margin of the Tarim plate) formed two stages, 420Ma ~ 411Ma and ca. 285Ma. The magnesian calcic to alkalic granites of 420Ma ~ 411Ma may formed during the extension process of the continental margin. The granite of 285Ma includes mostly ferroan calc-alkalic to alkali-calcic rocks with high SiO2 and high alkaline contents, and obviously negative anomaly of Eu, Ba, Sr, P, Ti, similar to the geochemical characteristics of the A-type granite which is formed during post-collisional extension. The Kule Lake ophiolite in southern Tianshan shows the affinity of N-MORB. A SHRIMP zircon U-Pb age of 425±8Ma has obtained for gabbros. Some zircons have given another group of 206Pb/238U age 918Ma, which may indicate the information of the pre-exist old basement rock. The small oceanic basin represented by Kule Lake ophiolite probably developed on the split northern margin of Tarim block. A model for Paleozoic tectonic evolution of the West Tianshan Orogen has been proposed here on the basis of the new results obtained in this dissertation and the previous published data. In Early Cambrian, the Terskey Ocean occurred along the North Nalati fault (NNF), and it separated the Yili plate from the Central Tianshan plate which was probably connected with the Tarim plate. The Terskey Ocean probably subducted towards south under the Central Tianshan plate and towards north under the Yili plate simultaneously. In the early stage of Late Ordovician, the Terskey Ocean had been closed, and the Yili and Central Tianshan plates collided. Meanwhile, extension happened within the joint Central Tianshan and Tarim plates gradually and the Paleo-South Tianshan Ocean had been formed. In Early Silurian, the Paleo-South Tianshan Ocean began to subduct beneath the composite Yili-Central Tianshan plate, which was intruded by volcanic arc granitoids. In Middle Silurian, the Paleo-South Tianshan Ocean, which had reached a certain width, was subducting strongly. And this subduction may have produced voluminous granitoids in the Central Tianshan plate. In the latest stage of Carboniferous, the Paleo-South Tianshan ocean closed, and the Yili-Central Tianshan plate and Tarim plate collided. In Late Cambrian, Paleo-Junggar Ocean occurred to north of the Yili plate; and started to subduct towards south under the Yili plate in Ordovician. This subduction may have produced a magma arc on the northern margin of the Yili plate. In Late Carboniferous, the Paleo-Junggar Ocean had been closed. The Yili-Central and Junggar plates amalgamated together. The West Tianhan Orogen may undergo a post-collisional collapse since Permian. And the magmatic activities may continue to early Triassic. The initial 87Sr/86Sr ration of the granitic rocks in the western Tianshan Mountains varies from 0.703226 to 0.716343, and Nd(t)from -6.50 to 2.03. The characteristics of Sr-Nd isotope indicate that the source of granitic material is not a sole source, which may be produced by mantle-crust magma mixing. In Paleozoic time, lateral growth of the continental crust along active continental margins was dominant, whereas the vertical growth of continental crust resulted from post- collisional mantle derived magmas was not obvious.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jiamusi Massif is an important tectonic unit in Northeast China. It’s significant for understanding the evolution of Paleo-Asian Ocean and reconstruction of the tectonic framework of Northeast China. Mudanjiang area is located in the southern margin of Jiamusi Massif and is the key to understand the evolution of Jiamusi Massif. However, the detailed geological research for Mudanjiang area has long been deficient in many important problems, such as the tectonic components of the Mudanjiang collision zone (MCZ), the age of collisional complexes and the scenario of tectonic evolution. Based on the lithology, geochemistry and the SHRIMP zircon U-Pb geochronology in Mudanjiang area, our new data and results come to some constraints for the tectonic reconstruction of MCZ as follows: 1) It is identified that the former suggestion, which the so-called “Heilongjiang Group” in Mudanjiang area is the vestige of oceanic crust, is correct. The oceanic relics represent the Neo-Proterozoic-Early Paleozoic oceanic basins based on the SHRIMP zircon U-Pb geochronology. 2) One sheet of gabbroic complex with oceanic island-type geochemical signature was discovered by this work in Mudanjiang area. 3) It is verified that the Proterozoic concordant U-Pb ages of the migmatites developed along the southern margin of Jiamusi massif, which represent the events of magmatic intrusion, as the direct evidence for the existence of the Proterozoic crystalline basements of the Jiamusi Massif. Based on geochronology, we suggest that the migmatization and coeval S-type granite magmatism of the southern margin of Jiamusi Massif took place about 490Ma. 4) The island arc complex has been found in the Heilongjiang Group, and the oceanic relics was found distributing on both sides, as provided important constraint for the tectonic reconstruction of the MCZ. 5) ~440Ma metamorphic event and coeval post-collisional granite magmatism have been firmly identified in the MCZ and its southern neighboring area. Together with previous data obtained by other researchers, our conclusions on the reconstruction of the tectonic architecture and evolution of the MCZ as follows: 1) The orogenic assemblages developed in the Mudanjiang collisional zone are featured by a sequence of ancient active continental margins and ensuing orogenic processing. The Mashan Group is the reworking basement of Jiamusi Massif, whereas the Heilongjiang Group represents arc and oceanic complexes characterized by imbricate deep-seated sliced and slivering sheets due to multi-phases of thrusting and nappe stacking. 2) The northern sub-belt of MCZ is probably the arc-continent collisional boundary related to the closure of main oceanic basin. The collisional age can be constrained by the events of syn-orogenic migmatization of migmatite, coeval S-type granite magmatism and the related granulite-facies metamorphism. Therefore, we suggested the collisional age of northern sub-belt is probably Cambrian-Early Ordovician. The extensive granulite-facies metamorphism of the Mashan Group in Jiamusi Massif, as affirmed by former works, was probably related with the collisional event. 3) The southern sub-belt of the MCZ was possibly related with the closure of back-arc basin. We presumed that the collisional age of southern sub-belt is about Ordovician-Early Silurian according to the ~440Ma extensive metamorphism and the occurrence of coeval post-collisional granite magmatism. 4) The extant structural architecture of the MCZ is related to the multi-phases of intra-continental superimposition, which is characterized by the Mesozoic nappe structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main research area of this thesis is the Western Depression in the Liaohe Basin. Based on the drilling core observation and mud logging data, the features of the mantle–derived fluids and their effects on oil/gas generation in the Western Depression of the Liaohe Basin,was studied with comprehensive methods of volcanic petrology, sediment petrology, fluid geochemistry, sedimentlogy, and structural geology, and use of polarized light microscope, fluorescence microscope, electron microscope, fluid and melt inclusion test, and isotopic test of nature gas etc. The observation of drill cores in study area and other studies reveal that the main passageway of the volcanic eruption in the Cenozoic was the Xibaqian-Gaosheng fault, and the volcanic rocks of each stage were distributed around it. Mantle-derived fluid which affected on oil/gas generation formed later than the volcanic spew and those fluids entered into the depression through the Taian-Dawa fault and the Central fault. The volatile fraction analysis of the melt inclusion reveals the presence of two kinds of mantle fluids; they are hydrogen-rich fluid and carbon dioxide-rich fluid. These the two kinds of fluids were mainly distributed in olivine and pyroxene respectively. The hydrothermal veins development have multiple stages, from high temperature quartz vein to low temperature calcite vein and analcime vein, in which the fluid inclusion extremity component are methane and carbon dioxide, which indicate that when mantle-derived fluids ascended and entered into the basin, most of these fluids interacted with the organic matter in the basin even though some of these entered into atmosphere. The present isotopic test of the nature gas reveals the high 3He/4He value between the region of the Taian-Dawa fault and the Central fault, which also imply the feature of origin in mantle. This phenomenon indicates that the Mesozoic basement faults and the main Cenozoic faults had connected crust and the mantle during the basin evolution, so the mantle derived fluids could enter the basin along those faults. The main source rocks of the ES3 and ES4 members of the Shahejie Formation began to expel hydrocarbon at the end period of the ES1 member of the Shahejie Formation, and reached its peak during the period of the Dongying Formation deposition. During these periods, the mantle derived-fluids entered the basin constantly along the main faults, and supplied lots of hydrogen for hydrocarbon generation. Though the volcanic rocks and the mantle-derived fluids in the Eastern Depression were more developed than in the Western Depression, the source rocks and the deep fluids were not interacted better than the Western Depression because of the affection of structural evolution. In the Eocene, the Eastern Depression did not deposit the ES4 member of the Shahejie Formation, furthermore, the mantle-fluid formed in the Fangshengpao stage escaped to the atmosphere, which confined the later stage hydrocarbon generation capability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a kind of strategic resource,petroleum play an very important role in current social stability, economic development and state safety. Since 1993 China has turned from a net oil exporter into a net oil importer, the figure of imported oil increased from then on. In 2004 China's total energy consumption exceeded Japan’s, and ranked in the second place, just inferior to America. Today China is the world’s third-largest importing nation, accounting for 6% of world imports and 8% of world consumption. Comparing with other strategic petroleum reserve schemes, underground oil storage possess many advantages, such as security, economy, less pollution, save land, suited for strategic reserve and so on, so it is the most ideal form for strategic petroleum reserve. In the background of China Strategic Petroleum Reserve Program started just now, this paper choose Circum-Bo sea region as a study area, and do some system study on the underground oil storage caverns constructed in inter-large granite rock masses in Circum-Bo sea region. On the foundation of a great amount of information come from both home and abroad, firstly this paper analysed the principle, economy, cavern shape, profile dimension, and gain some cognizances and logos, as follows: ①Hard rock mass such as granite is the major rock, in which underground oil storage are constructed; ②Unlined underground oil storage caverns had been wide spread used as a sort of oil storage form abroad, there already exist a suit of skilled experience and technologies to prevent oil product from leaking; ③Compared with surface tanks, underground oil storage cavern possess predominance in economy clearly. In general, it will be more economical when the storage capacity exceed 50000m3. The quality of rock mass is the most important factor for underground storage cost, however such as hydrogeology, storage capacity, the number of storage galleries, the length, storage product, mechanical equipments, geographic location also influent the cost. In designed depth of the underground storage, the rock mass of Jinzhou mainly belong to class Ⅱ, but parts with dykes, clayization alteration, and dense joints are Ⅲ, Ⅳ; ④Now, there are few underground oil storages span more than 25m in both abroad and home. The examples of some ancient underground works and modern underground excavation with wide span surely give us many precious elicitations to construct more great unlined storage caverns, when the rock mass quality is good, cavern shape and construction method also are proper, it is quite possible to construct underground oil storage cavern with span more than 30m . The main axis orientation of Jinzhou underground oil storage cavern is NW direction, the cavern's elevation locate between -53msl and -76msl. The storage's total volume is about 3×106m3, composed of 8 parallel galleries with 950m length, the pillars between them are 45m, and every two of galleries form one unit, which can deposit 75×104m3 for each unit. The product will be stored are Saudi light and Saudi medium crude oil, the main cavern's section is 411.5m2, with 23m height and 19m width. According to the principle and technique of engineering geomechanics, this study supply a sort of system scientific thinking and method for sitting location of underground oil storage in granite region: ① On the foundation of the earth crust stability sub-zone appraise of Circum-Bo sea region, farther research concerning granite distribution, genesis, geological period and fault structure are conducted in stable areas, generally, this paper select Liaoxi, east shore of Liaotung peninsula and Jiaotung peninsula as target areas for underground oil storage regions, where Mesozoic granite is magnitude; ②After roundly comparison in facts of geologic structure, engineering geology, hydrogeology, topography, transportation and so on of three granite distributed areas, at last, selecting Jingzhou granite zone in Liaoxi out as an ideal construction area; ③ Detailed investigation is conducted in the southeast of Baimashi in Jingzhou development district, the final field. Ultrasonic Borehole Television, as a major way to collect original information of borehole rock mass were used, which is very effective to appraise the quality of deep rock mass; ④ According to the field data of tectonic stress, rock mass quality, the spatial distribution of fracture water, some optimum designs in cross section, axial direction and cavern span have been designed for the underground oil storage cavern layout in Jinzhou. To understand the characteristics of swelling alteration rock in Jinzhou granite mass, collected abundant swelling alteration rock engineering examples in granite, which study them in detail, concluded the swelling alteration rock distribute nearly everywhere in China, intruded medium-basic dykes alteration, along discontinuities and mineral hydrothermal alteration with genesis of granite are three main forms clayization alteration rock in granite rock mass. In Jinzhou field, from macro to micro studied the swelling rock which induced by mid-basic dyke intrusion, with weak swelling. In conclusion, this paper conclude the distribution rule and features of expansion alteration rock in filed, and advise some technical suggestions for excavation at swelling alteration rock part. The main features of this paper: ①In the process of site selection, investigation and design, a suit of technique and method of engineering geomechanics metasynthesis were formed, which is significative to guide the large scale underground oil storage cavern sitting location, investigation and design in granite rock mass; ②The detailed discussion on the engineering geology problems in granite mass, such as weathering crust, faults, dykes and clayization alteration rock, are useful for other projects in aspects of site selection, engineering geology evaluation and stability estimation; ③The summary and integration of the genesis, type, countermeasure relate to swelling alteration rock, also is likely to be used for other underground oil storage caverns constructed in swelling alteration granite. In conclusion, this study is meaningful for guiding the large scale underground oil storage for site selection, investigation and design in granite rock mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petroleum and Natural Gas is an important strategic resources. The reserves of Petroleum and Natural Gas can’t meet the need of our country, which also blocks the development of economy and threatens the safety of national. Therefore, it makes a great sense to bring “the second round of oil & gas exploration” into effect and study the exploration of oil and gas of Pre-Cenozoic residual basins in China. The integrated geophysical exploration is the main way to research the Pre-Cenozoic residual basins. Gravity exploration is one of the most important exploration methods, which has played an important role in oil and gas prospecting, such as compartmentalizing geotectonic elements, delineating the distribution range of sedimentary basins, searching oil and gas structure, abstracting oil and gas information, and so on, from its naissance. The isostatic gravity anomalies is significant for exploration, which can help us research deep crustal structure, the equilibrium state of earth, the geologic structure of shallow crust, the basement shape of sedimentary basins and the genetic evolution of sedimentary basins. In the paper, we stress the implication and physical meanings systemically, and discuss the calculation theory. On the basis of previous work, we test different isostatic compensation models and parameters to find out their influences to the result of isostatic gravity anomalies. In addition, we improve the method of isostatic gravity anomalies calculation and give a system of isostatic gravity anomalies calculation which is proved has satisfying effect. From the research above, we find that the results of Platt model and Airy model are consistent, which have similar form and almost the same value. However, by contrast, the Airy model is proved has better adaptability than Platt model. The two main parameters——crust thickness and density difference of crust and mantle, both have influence to the isostatic gravity anomalies, but the latter have more. Finally, we adopt the regional field extending edge method to make the result more of actual geologic condition. On the methods above, we calculate the isostatic gravity anomalies field in Yellow Sea area from the Bouguer gravity anomalies and the water depth and altitude data. And then the isostatic gravity anomalies character is analyzed and the integrated geological-geophysical interpretation is made on the basis of summarizing the previous research result systemically and analyzing other geophysical data and geological information. From the research, we find that the Yellow Sea area belongs to continental type crust equilibrium regions, where the isostatic gravity anomalies field is placid and has less fluctuation values, which implies that the area is in equilibrium state to different extends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using high-resolution laser grain size instrument Mastersizer 2000, the grain size distribution of windblown depositions (loess and sandy dunes), aqueous sediments (lake, river, riverside and foreshore sand), weathering crust, sloping materials and other fine-grain sediments are systemically measured. The multimodal characteristics of grain size distribution of these sediments are carefully studied. The standard patterns and their grain size characteristics of various sediments are systemically summarized. The discrepancies of multimodal distribution among windblown depositions, aqueous sediments and other sediments are concluded and the physical mechanisms of grain size multimodal distribution of various sediments are also discussed in this paper. The major conclusions are followed: 1. The multimodal characteristic of grain size distribution is a common feature in all sediments and results from properties of transportation medium, dynamic intensity, transportation manner and other factors. 2. The windblown depositions are controlled by aerodynamic forcing, resulting in that the median size of the predominant mode gradually decreases form sandy dunes to loess. Similarly, the aqueous sediments are impacted by dynamic forces of water currents and the median grain size of the predominant mode decreases gradually from river to lake sediments. Because the kinetic viscidity of air is lower than of water, the grain size of modes of windblown depositions is usually finer than that of corresponding modes of aqueous sediments. Typical characteristics of sediments grain size distribution of various sediments have been summarized in the paper: (1) Suspended particles which diameters are less than 75μm are dominant in loess and dust. There are three modes in loess’ grain size distribution: fine, median and coarse (the median size is <1μm、1-10μm、10-75μm, respectively). The coarse mode which percentage is larger than that of others is controlled by source distance and aerodynamic intensity of dust source areas. Some samples also have a saltation mode which median size is about 300-500μm. Our analysis demonstrates that the interaction of wind, atmospheric turbulence, and dust grain gravity along the dust transportation path results in a multimodal grain size distribution for suspended dust. Changes in the median sizes of the coarse and medium modes are related to variation in aerodynamic forcing (lift force related to vertical wind and turbulence) during dust entrainment in the source area and turbulence intensity in the depositional area. (2) There is a predominant coarse saltation mode in grain size distribution of sandy dunes, which median size is about 100-300μm and the content is larger than that of other modes. The grain size distribution curve is near axis symmetric as a standard logarithm normal function. There are some suspended particles in some samples of sandy dunes, which distribution of the fine part is similar to that of loess. Comparing with sandy samples of river sediments, the sorting property of sandy dunes is better than of river samples although both they are the saltation mode. Thus, the sorting property is a criterion to distinguish dune sands and river sands. (3) There are 5~6 modes (median size are <1μm, 1-10μm, 10-70μm, 70-150μm, 150-400μm, >400μm respectively) in grain size distribution of lacustrine sediments. The former 4 modes are suspensive and others are saltated. Lacustrine sediments can be divided into three types: lake shore facies, transitional facies and central lake facies. The grain size distributions of the three facies are distinctly different and, at the same time, the transition among three modes is also clear. In all these modes, the third mode is a criteria to identify the windblown deposition in the watershed. In lake shore sediments, suspended particles are dominant, a saltation mode sometimes occurs and the fourth mode is the most important mode. In the transitional facies, the percentage of the fourth mode decreases and that of the second mode increases from lake shore to central lake. In the central lake facies, the second mode is dominant. A higher content of the second mode indicates its position more close to the central lake. (4) The grain size distribution of river sediments is the most complex. It consist of suspension, saltation and rolling modes. In most situations, the percentage of the saltation mode is larger than that of other modes. The percentage of suspension modes of river sediments is more than of sandy dunes. The grain size distribution of river sediments indicates dynamic strength of river currents. If the fourth mode is dominant, the dynamic forcing of river is weaker, such as in river floodplain. If the five or sixth mode is dominant, the water dynamic forcing of rivers is strong. (5) Sediments can be changed by later forcing in different degree to form some complicated deposition types. In the paper, the grain size distribution of aqueous sediments of windblown deposition, windblown sediments of aqueous deposition, weathering crust and slope materials are discussed and analyzed. 3. The grain size distribution characteristics of different sediments are concluded: (1) Modal difference: Usually there are suspended and saltation modes in the windblown deposition. The third mode is dominant in loess dust and the fifth mode is predominant in sandy dunes. There are suspended, saltation and rolling particles in aqueous sediments. In lacustrine sediments, the second and fourth mode are predominant for central lake facies or lake shore facies, respectively. In river sediments, the fourth, or fifth, or sixth mode is predominant. Suspended modes: the grain size of suspended particles of windblown depositions usually is less than 75μm. The content of suspended particles is lower or none in sandy dunes. However, suspended particles of aqueous sediments may reach 150μm. Difference in grain size of suspended modes represents difference between transitional mediums and the strength of dynamic forcing. Saltation modes: the median size of saltation mode of sandy dunes fluctuates less than that of river sediments. (2) Loess dust and lacustrine sediment: Their suspended particles are clearly different. There is an obvious pit between the second and the third modes in grain size distribution of lacustrine sediments. The phenomenon doesn’t occur in loess dust. In lacustrine sediments, the second mode can be a dominant mode, such as central lake facies, and contents of the second and the third modes change reversely. However, the percentage of the third mode is always the highest in loess dust. (3) Dune Sand and fluvial sand: In these two depositions, the saltation particles are dominant and the median sizes of their saltation modes overlay in distribution range. The fifth mode of dune sand fluctuates is sorted better than that of fluvial sand. (4) Lacustrine and fluvial sediments: In lacustrine sediments, there are 5-6 modes and suspended particles can be predominant. The second mode is dominant in central lake facies and the third mode is dominant in lake shore facies. Saltation or roll modes occurred in central lake facies may indicate strong precipitation events. In fluvial sediments, saltation particles (or rolling particles) usually dominant. 4. A estimation model of lake depth is firstly established by using contents of the second, the third and the fourth modes. 5. The paleoenvironmental history of the eastern part of SongLiao basin is also discussed by analyzing the grain size distribution of Yushu loess-like sediments in Jilin. It was found that there is a tectonic movement before 40ka B.P. in SongLiao basin. After the movement, loess dust deposited in Yushu area as keerqin desert developed. In recent 2000 years, the climate became drier and more deserts activated in the eastern part of Song-Liao basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of its sensitivity to the velocity discontinuity of the earth, receiver function technique has become a routine procedure used to probe interior structure of the earth. Receiver functions contain anisotropic information of the earth’s interior, however, traditional receiver function techniques such as migration imaging and waveform inversion method, which are based on isotropic media assumption, can not effectively extract the anisotropy information contained in the azimuth variation pattern. Only by using the anisotropic media, e.g. a model with symmetric axis of arbitrary orientation, computing the response, can we obtain the detailed anisotropy information hidden in the radial and transversal receiver function. Focusing on the receiver function variation pattern changing wtih different back azimuths, we introduced different kinds of symmetric systems of seismic anisotropy used often, and summarized some possible causes of anisotropy formation. We show details about how to calculate the response of a stratified anisotropy model with symmetric axis of arbitrary orientation. We also simulated receiver functions among different models and analyzed how the changing of anisotropic parameters influence the azimuth variation pattern of receiver functions. The anisotropy study by receiver function analysis was applied to Taihang Mountain Range (TMR) in North China in this thesis. The maximum entropy spectrum deconvolution technique was used to extract radial and transversal receiver functions from the waveforms of 20 portable seismic stations deployed in TMR. Considering the signal-to-noise ratio and the azimuth coverage, we got the variation pattern of receiver functions for 11 stations. After carefully analyzing the pattern of the receiver functions that we got, we obtained the reliable evidence on the existence of anisotropy in the shallow crust in TMR. Our results show that, although the thickness of the upper crustal layer is only about 1 km, the layer shows a strong anisotropy with magnitude of 8~15%; in the deeper of crust, the magnitudes of anisotropy is about 3%~5%, showing a pattern with fast-symmetric-axis. The crust anisotropy beneath TMR in North China obtained in this study also shows a significant difference in both the lateral and vertical scale, which might imply a regional anisotropy characteristic in the studied region.