324 resultados para Ultraviolet spectra.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y2O3: Eu3+ phosphor layers were deposited on monodisperse SiO2 particles with different sizes ( 300, 500, 900, and 1200 nm) via a sol-gel process, resulting in the formation of Y2O3: Eu3+@SiO2 core-shell particles. X-ray diffraction ( XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy ( TEM), time-resolved photoluminescence ( PL) spectra, and lifetimes were employed to characterize the Y2O3: Eu3+@SiO2 core-shell samples. The results of XRD indicated that the Y2O3: Eu3+ layers began to crystallize on the silica surfaces at 600 degrees C and the crystallinity increased with the elevation of annealing temperature until 900 degrees C. The obtained core-shell particles have perfect spherical shape with narrow size distribution and non-agglomeration. The thickness of the shells could be easily controlled by changing the number of deposition cycles ( 60 nm for three deposition cycles). Under the excitation of ultraviolet ( 250 nm), the Eu3+ ion mainly shows its characteristic red ( 611 nm, D-5(0)-F-7(2)) emissions in the core-shell particles from Y2O3: Eu3+ shells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sr3Al2O5Cl2:Ce3+,Eu2+ phosphors were prepared by solid state reaction. The obtained phosphors exhibit a strong absorption in the UV-visible region and have two intense emission bands at 444 and 609 nm. The energy transfer from the Ce3+ to Eu2+ ions was observed, and the critical distance has been estimated to be about 24.5 A by spectral overlap method. Furthermore, the developed phosphors can generate lights from yellow-to-white region under the excitation of UV radiation by appropriately tuning the activator content, indicating that they have potential applications as an UV-convertible phosphor for white light emitting diodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y2O3 : Eu3+ microspheres, with an average diameter of 3 mu m, were successfully prepared through a large-scale and facile solvothermal method followed by a subsequent heat treatment. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, inductive coupled plasma atomic absorption spectrometric analysis, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra, as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. These microspheres were actually composed of randomly aggregated nanoparticles. The formation mechanisms for the Y2O3 : Eu3+ microspheres have been proposed on an isotropic growth mechanism. The Y2O3 : Eu3+ microspheres show a strong red emission corresponding to D-5(0) -> F-7(2) transition (610 nm) of Eu3+ under ultraviolet excitation (259 nm) and low-voltage electron beams excitation (1-5 kV), which have potential applications in fluorescent lamps and field emission displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly crystalline CaMoO4:Tb3+ phosphor layers were grown on monodisperse SiO2 particles through a simple sol-gel method, resulting in formation of core-shell structured SiO2@CaMoO4:Tb3+ submicrospheres. The resulting SiO2@CaMoO4: Tb3+ core-shell particles were fully characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and kinetic decays. The XRD results demonstrate that the CaMoO4:Tb3+ layers begin to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. SEM and TEM analysis indicates that the obtained submicrospheres have a uniform size distribution and obvious core-shell structure. SiO2@CaMoO4:Tb3+ submicrospheres show strong green emission under short ultraviolet (260 nm) and low-voltage electron beam (1-3 kV) excitation, and the emission spectra are dominated by a D-5(4) -F-7(5) transition of Tb3+(544 nm, green) from the CaMoO4:Tb3+ shells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Tm3+-doped LaGaO3 phosphors were prepared through a Pechini-type sol-gel process [M. P. Pechini, U.S. Patent No. 3,330,697 (11 July 1967)]. X-ray diffraction, field emission scanning electron microscopy, photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. Under the excitation of ultraviolet light and low voltage electron beams (0.5-3 kV), the Tm3+-doped LaGaO3 phosphors show the characteristic emissions from the LaGaO3 host lattice and the Tm3+ (D-1(2), (1)G(4)-F-3(4), and H-3(6) transitions), respectively. The blue CL of the Tm3+-doped LaGaO3 phosphors, with a dominant wavelength of 458 nm, had better Commission International I'Eclairage chromaticity coordinates (0.1552, 0.0630) and higher emission intensity than the commercial product (Y2SiO5:Ce3+).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaIn2O4:xEu(3+) (x=0.5%,1.0%,1.5%) phosphors were prepared by the Pechini sol-gel process [U.S. Patent No. 3,330,697 (1967)] and characterized by x-ray diffraction and photoluminescence and cathodoluminescence spectra as well as lifetimes. Under the excitation of 397 nm ultraviolet light and low voltage electron beams, these phosphors show the emission lines of Eu3+ corresponding to D-5(0,1,2,3)-F-7(J) (J=0,1,2,3,4) transitions from 400 to 700 nm (whole visible spectral region) with comparable intensity, resulting in a white light emission with a quantum efficiency near 10%. The luminescence mechanism for Eu3+ in CaIn2O4 has been elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-NaYF4:Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu(3+) (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to D-5(0-3) -> F-7(J) (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocyrstalline Tb3+-doped LaGaO3 phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field-emission scanning electron microscopy (FESEM), photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 900 degrees C and pure LaGaO3 phase can be obtained at 1000 degrees C. FESEM images indicate that the Tb3+-doped LaGaO3 phosphors are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light and low-voltage electron beams (0.5-3 kV), the Tb3+-doped LaGaO3 phosphors show the characteristic emissions from the LaGaO3 host lattice and the Tb3+ (D-5(3,4)-F-7(6,5,4,3) transitions). The emission colors of Tb3+-doped LaGaO3 phosphors can be tuned from blue to green by changing the excitation wavelength of ultraviolet light and the doping concentration of Tb3+ to some extent. Relevant luminescence mechanisms are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SrIn2O4:Dy3+/Pr3+/Tb3+ white/red/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveal that the samples begin to crystallize at 800 degrees C and pure SrIn2O4 phase can be obtained at 900 degrees C. FE-SEM images indicate that the SrIn2O4:Dy3+, SrIn2O4:Pr3+, and SrIn2O4:Tb3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams (1 - 5 kV), the SrIn2O4:Dy3+, SrIn2O4: Pr3+, and SrIn2O4: Tb3+ phosphors show the characteristic emissions of Dy3+ (F-4(9/2) - H-6(15/2) at 492 nm and 4F(9/2) - 6H(13/2) at 581 nm, near white), Pr3+ (P-3(0) - H-3(4) at 493 nm, D-1(2) - H-3(4) at 606 nm, and P-3(0) - H-3(6) at 617 nm, red) and Tb3+ (D-5(4) - F-7(6,5,4,3) transitions dominated by D-5(4) - F-7(5) at 544 nm, green), respectively. All of the luminescence resulted from an efficient energy transfer from the SrIn2O4 host lattice to the doped Dy3+, Pr3+, and Tb3+ ions, and the luminescence mechanisms have been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Y3Al5O12: Ce3+/Tb3+ ( average crystalline size 30 nm) phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2@Y3Al5O12: Ce3+/Tb3+ phosphor particles. The obtained core-shell structured phosphors consist of well-dispersed submicron spherical particles with a narrow size distribution. The thickness of the Y3Al5O12:Ce3+/Tb3+ shells on the SiO2 cores ( average size about 500 nm, crystalline size about 30 nm) could be easily tailored by varying the number of deposition cycles (100 nm for four deposition cycles). Under the excitation of ultraviolet and low-voltage electron beams (1-3 kV), the core-shell SiO2@Y3Al5O12:Ce3+/ Tb3+ particles show strong yellow-green and green emission corresponding to the 5d-4f emission of Ce3+ and D-5(4)-F-7(J) ( J = 6, 5, 4, 3) emission of Tb3+, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caln(2)O(4):Dy3+/Pr3+/Tb3+ blue-white/green/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence (PL) and cathodoluminescencc (CL) spectra as well as lifetimes were utilized to characterize the samples. The XRD results reveal that the samples begin to crystallize at 800 degrees C 3-1 and pure CaIn2O4 phase can be obtained after annealing at 900 degrees C. The FE-SEM images indicate that the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ samples consist of spherical grains with size around 200-400nm. Under the excitation of ultraviolet light and low electron beams (1-5kV), the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ phosphors show the characteristic emissions of Dy3+ ((F9/2-H15/2)-F-4-H-6 and (F9/2-H13/2)-F-4-H-6 transitions, blue-white), Pr3+ ((P0-H4)-P-3-H-3, (D2-H4)-D-1-H-3 and (P1-H5)-P-3-H-3 transitions, green) and Tb3+ ((D4-F6,5,4,3)-D-5-F-7 transitions, green), respectively. All the luminescence is resulted from an efficient energy transfer from the CaIn2O4 host lattice to the doped Dy3+ ,Pr3+ and Tb3+ ions, and the corresponding luminescence mechanisms have been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SrCO3:Eu3+ /Tb3+ microneedles that grow along the a-axis were successfully prepared through a large-scale and facile hydrothermal method without any template and further annealing treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectra as well kinetic decays, were used to characterize the samples. The preferential growth along a-axis for SrCO3:Eu3+/Tb3+ microneedles has been proposed through analysis of the XRD patterns of samples obtained at different hydrothermal treatment time. Under ultraviolet excitation, the SrCO3:Eu3+ and SrCO3:Tb3+ microncedle samples show a strong red and green emission corresponding to the D-5(0)-F-7(j) (J = 1, 2, 3, 4) transitions of Eu3+ and the D-5(4)-(7) F-j (J = 6, 5, 4, 3) transitions of Tb3+, respectively, which have potential applications in lighting fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphors CaYBO4:RE3+ (RE = Eu, Gd, Tb, Ce) were synthesized with the method of solid-state reaction at high temperature, and their vacuum ultraviolet (VUV)-visible luminescent properties in VUV-visible region were studied at 20 K. In CaYBO4, it is confirmed that there are two types of lattice sites that can be substituted by rare-earth ions. The host excitation and emission peaks of undoped CaYBO4 are very weak, which locate at about 175 and 350-360nm, respectively. The existence of Gd3+ can efficiently enhance the utilization of host absorption energy and result in a strong emission line at 314 nm. In CaYBO4, Eu3+ has typical red emission with the strongest peak at 610 nm; Tb3+ shows characteristic green emission, of which the maximum emission peak is located at 542 nm. The charge transfer band of CaYBO4:Eu3+ was observed at 228 nm; the co-doping of Gd3+ and Eu3+ can obviously sensitize the red emission of Eu3+. The fluorescent spectra of CaYBO4:Ce3+ is very weak due to photoionization; the co-addition of Ce3+-Tb3+ can obviously quench the luminescence of Tb3+.