233 resultados para UV-Vis absorption spectroscopy
Resumo:
Multilayer films were fabricated by layer-by-layer electrostatic deposition techniques between poly(diallyIdimethylammonium chloride) (PDDA) and calf thymus DNA (CT DNA) on glassy carbon and quartz substrates. Electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy and UV-vis spectroscopy demonstrated the uniform assembly of PDDA/DNA multilayer films, and X-ray photoelectron spectroscopy confirmed the elemental composition of the films. Moreover, the interaction of DNA in PDDA/DNA films with methyl green was investigated by UV-vis spectroscopy and circular dichroism (CD). (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A simple route to the fabrication of multilayer films containing Pd nanoparticles is described. Following layer-by-layer assembly of PdCl42- and polycation, QPVP-Os (a quaternized poly(4-vinylpyridine) complexed with [Os(bpy)(2)Cl](2+/+)), on 4-aminobenzoic acid-modified glassy carbon electrodes, the three-dimensional Pd nanoparticle multilayer films are directly formed on electrode surfaces via electrochemical reduction of PdCl42- sandwiched between polymers. The growth of PdCl42- is easy on electrode surfaces by electrostatic interaction, and the assembly processes are monitored by cyclic voltammetry and UV-vis spectroscopy. The depth profile analyses by X-ray photoelectron spectroscopy verify the constant composition of the Pd nanoparticle multilayer films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 3-7 mn. The resulting Pd nanoparticle multilayer-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen and oxidation of hydrazine compounds in aqueous solution.
Resumo:
The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.
Resumo:
A unique reverse micelle method has been developed to prepare gold-coated iron (Fe@Au) nanoparticles. XRD, UV/vis, TEM, and magnetic measurements are utilized to characterize the nanocomposites. XRD only gives FCC patterns of gold for the obtained nanoparticles. The absorption band of the Fe@Au colloid shifts to a longer wavelength and broadens relative to that of the pure gold colloid. TEM results show that the average size of Fe@Au nanoparticles is about 10 nm, These nanoparticles are self-assembled into chains on micron scale under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature (T-B) of 42 K, At 300 K (above T-B), no coercivity (Hc) and remanence (M-r) is observed in the magnetization curve, while at 2K (below T-B) He and M, are observed to be 728 Oe and 4.12 emu/g, respectively, (C) 2001 Academic Press.
Resumo:
A series of phenyl-capped oligoanilines were prepared by chemical oxidation coupling. By comparing the FTIR spectra of fully reduced oligoanilines with those of oxidized oligoanilines, the intensity ratio of 1600cm(-1) to 1500cm(-1) was correlated to the content of the quinoid rings in the oligomer. In UV-Vis spectra of the oligoanilines in their oxidized state, the maximum absorption near 600nm redshifted from 540nm to 610nm with increasing polarity of the solvent, indicating the existence of tautomers in oxidized oilgoanilines.
Resumo:
Copper phthalocyanine-Fe2O3 nanoparticles alternating thin films were fabricated by Langmuir-Blodgett technique. Molecular orientation of [4-(4'-benzyloxy phenyl sulfonyl)phenoxy]-tris-4-(2,4-di-t-phenoxy) phthalocyanine copper (II) in its alternating LB films, deposited at different conditions,was studied by polarized UV-Vis spectra. The tilt extent of the copper phthalocyanine molecule omits LB films increases with the surface pressure of the subphase increasing on the same subphase, or with Fe2O3 concentration decreasing at the same pressure. The orientation of the copper phthalocyanine derivative is important for the gas-sensing properties. The bigger the tilt extent of the phthalocyanine molecule is, the greater the sensitivity of the film is.
Resumo:
Aniline pentamer and hexamer in the leucoemeraldine oxidation state were synthesized through a novel method. The method was accomplished by the reaction of parent aniline tetramer in the pernigraniline oxidation state with diphenylamine and N-phenyl-1,4-phenylenediamine in the leucoemeraldine oxidation state respectively. The oligomers in the leucoemeraldine oxidation state were characterized by IR, NMR, elemental analysis and MALDI-MS. Aniline pentamer and hexamer in the emeraldine oxidation state were synthesized by the oxidation of Ag2O in DMF. It was found that some fragmentation occurred when the pentamer and hexamer were oxidized by (NH4)(2)S2O8 and FeCl3. 6H(2)O. The pentamer and hexamer in the emeraldine oxidation state was studied by UV/Vis spectra. The relative intensity of exciton peak for pentaaniline showed a little increase compared with that of hexaaniline.
Resumo:
We here present a versatile process for the preparation of maghemite/polyaniline (gamma-Fe2O3/ PAn) nanocomposite films with macroscopic processibility, electrical conductivity, and magnetic susceptibility. The gamma-Fe2O3 nanoparticles are coated and the PAn chains are doped by anionic surfactants of omega-methoxypoly(ethylene glycol) phosphate (PEOPA), 4-dodecylbenzenesulfonic acid (DBSA), and 10-camphorsulfonic acid (CSA). Both the coated gamma-Fe2O3 and the doped PAn are soluble in common organic solvents, and casting of the homogeneous solutions gives free-standing nanocomposite films with gamma-Fe2O3 contents up to similar to 50 wt %. The morphology of the gamma-Fe2O3 nanoparticles are characterized by transmission electron microscopy, UV-vis spectroscopy, and X-ray diffractometry. The gamma-Fe2O3/PAn films prepared from chloroform/m-cresol solutions of DBSA-coated gamma-Fe2O3 and CSA-doped PAn are conductive (sigma = 82-237 S/cm) and superpapamagnetic, exhibiting no hysteresis at room temperature. The zero-field-cooled magnetization experiment reveals that the nanocomposite containing 20.8 wt % gamma-Fe2O3 has a blocking temperature (T-b) in the temperature region of 63-83 K.
Resumo:
The UV-visible absorption and fluorescence spectra of a soluble polyimide, YS-30, in several organic solvents were measured over a wide range of concentration. The experimental results show that there exist both intramolecular and intermolecular electron donor acceptor interactions for YS-30 molecules. The fluorescence behavior of YS-30 in N,N-dimethylacetamide and in chloroform solutions is similar in general, except that its ground-state intermolecular charge transfer emission is more obvious in N,N-dimethylacetamide solution. This difference is attributed to the greater extent of disruption of the chain packing by solvent or/and the more efficient radiationless energy dissipation process from the excited state complexes to chloroform. The intensity ratio of intermolecular charge transfer emission to intramolecular charge transfer emission is used to characterize the state of aggregation of YS-30 molecules in solutions. The plot of this ratio versus concentration indicates the existence of two critical concentrations. It is also found from the same plot that the decrease of coil size is very pronounced during the initial stage of shrinkage.
Resumo:
An octadecanethiol monolayer was formed on an aqueous gold sols subphase, it's LB films were characterized by means of pi-A isotherms, TEM (transmission electron microscopy), XRD (X-ray diffraction) and UV-Vis spectroscopy. (C) 1998 Elsevier Science Limited. All rights reserved.
Resumo:
SnO2 nanoparticles were found to self-pack at the air-hydrosol interface and form a nanoparticulate film. The self-packed films were observed under a Brewster angle microscope, and investigated by recording the time evolution of surface pressure and pi-A isotherms. The results show that SnO2 nanoparticles take 3 h to form a complete film at the air-hydrosol interface. Composite monolayers of SnO2 and arachidic acid were obtained by spreading arachidic acid onto a fresh hydrosol surface. Composite Y-type LB films were transferred from the air-hydrosol interface onto substrates, and characterized by FTIR, UV-vis, X-ray diffraction spectroscopy and TEM techniques. The results show that the composite films have good structure, with SnO2 nanoparticles uniformly and compactly distributed in the arachidate matrix. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Multilayer assemblies of silver doped ZnS colloid and polycation were fabricated by a self-assembly technique exploiting electrostatic interaction. UV/Vis spectra showed the uniform deposition process and X-ray photoemission spectroscopy (XPS) confirmed the coexistence of silver. It was found that the emission spectra of the silver doped ZnS colloid red-shifted to 528 nm comparing with undoped ZnS colloid. However, the most important finding was that the luminescence intensity of doped ZnS assembled in films was much stronger than that of undoped ZnS in films and that of doped ZnS in the spin-casting film. The mechanism of the enhancement luminescence was discussed. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
The catalytic oxidation of cyclohexene to cyclohexanone using Pd(OAc)(2)/HQ/FePc was investigated in an acidic aqueous solution of acetonitrile. The role of each component of this system in the oxidation of cyclohexene was explored by means of UV-VIS, IR, XPS spectroscopy and. cyclic voltammetry, respectively. Based on the experimental results, the mechanism of the oxidation of cyclohexene catalyzed by Pd(OAc)(2)/HQ/FePc was elucidated.
Resumo:
Terbium(III) stearoylanthranilate has been prepared as a high property Z-type Langmuir-Blodgett (LB) film on various substrates by a vertical transfer process. The UV-visible absorption spectra and the low angle X-ray diffraction peaks have been collected in order to investigate the molecular arrangement and aggregation in the LB films. The average molecular orientation in multilayer stacking was determined by Attenuated Total Reflection Spectroscopy. The influence of the chemical environment of terbium within the LB films on the luminescence properties has been discussed. (C) 1997 Elsevier Science S.A.
Resumo:
The hydrosol of SnO2 nanoparticles (NP) have been prepared by colloid chemistry method. The composite LB monolayer and multilayer of SnO2 NP-AA have been obtained by LB technique at the gas-liquid interface of the hydrosol subphase. The structures of the monolayer and multilayer were characterized by IR, UV-Vis, small angle X-ray diffraction spectroscopy and TEM technique, The results indicate that the coverage of SnO2 NP at the composite monolayer's surface is high and the sites of SnO2 NP are similar. The multilayer has good periodic structure.