252 resultados para Tunable
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
We investigate the controllable negative and positive group delay in transmission through a single quantum well at the finite longitudinal magnetic fields. It is shown that the magneto-coupling effect between the longitudinal motion component and the transverse Landau orbits plays an important role in the group delay. The group delay depends not only on the width of potential well and the incident energy, but also on the magnetic-field strengthen and the Landau quantum number. The results show that the group delay can be changed from positive to negative by the modulation of the magnetic field. These interesting phenomena may lead to the tunable quantum mechanical delay line. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We investigate the interband optical absorption spectra near the band edge of a cylindrical semiconductor quantum wire in the presence of a static electric field and a terahertz electric field polarized along the axis. Optical absorption spectra are nonperturbatively calculated by solving the low-density semiconductor Bloch equations in real space and real time. The influence of the Franz-Keldysh (FK) effect and dynamical FK effect on the absorption spectrum is investigated. To highlight the physics behind the FK effect and dynamical FK effect, the spatiotemporal dynamics of the polarization wave packet are also presented. Under a reasonable static electric field, substantial and tunable absorption oscillations appear above the band gap. A terahertz field, however, will cause the Autler-Townes splitting of the main exciton peak and the emergence of multiphoton replicas. The presented results suggest that semiconductor quantum wires have potential applications in electro-optical devices.
Resumo:
This letter presents the effective design of a tunable 80 Gbit/s wavelength converter with a simple configuration consisting of a single semiconductor optical amplifier (SOA) and an optical bandpass filter (OBPF). Based on both cross-gain and cross-phase modulation in SOA, the polarity-preserved, ultrafast wavelength conversion is achieved by appropriately filtering the blue-chirped spectral component of a probe light. Moreover, the experiments are carried out to investigate into the wavelength tunability and the maximum tuning range of the designed wavelength converter. Our results show that a wide wavelength conversion range of nearly 35 nm is achieved with 21-nm downconversion and 14-nm upconversion, which is substantially limited by the operation wavelength ranges of a tunable OBPF and a tunable continuous-wave laser in our experiment. We also exploited the dynamics characteristics of the wavelength converter with variable input powers and different injection current of SOA. (C) 2008 Wiley Periodicals, Inc.
Resumo:
An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from I to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report a novel technique to broaden and reshape the spectrum of picosecond laser pulse based on the seeder of gain switch laser diode and Yb(3+)-doped fiber amplifier (YDFA). From compensating the seed spectrum with the gain of YDFA, the seed pulse of 7 nm bandwidth is broadened to 20 nm, and the flat top spectral shape is obtained as well. A self-made fiber coupled tunable filter is used to realize the tunable output laser with the wavelength range from 1053 nm to 1073 nm and the line width of 1.4 nm.
Resumo:
The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterojunction GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.
Resumo:
The two-section tunable ridge waveguide distributed Bragg reflector (DBR) laser fabricated by the selective intermixing of an InGaAsP-InGaAsP quantum well structure is presented. The threshold current of the laser is 51mA. The tunable range of the laser is 4.6nm, and the side mode suppression ratio (SMSR) is 40dB.
Resumo:
A GaInNAs/GaAs multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetector operating at 1.3 mum with the full-width at half-maximum of 5.5 nm was demonstrated. The GaInNAs RCE photodetector was grown by molecular-beam epitaxy using an ion-removed dc-plasma cell as nitrogen source. GaInNAs/GaAs MQW shows a strong exciton peak at room temperature that is very beneficial for applications in long-wavelength absorption devices. For a 100-mum diameter RCE photodetector, the dark current is 20 and 32 pA at biases of 0 and 6 V, respectively, and the breakdown voltage is -18 V. The measured 3-dB bandwidth is 308 MHz. The reasons resulting in the poor high speed property were analyzed. The tunable wavelength of 18 nm with the angle of incident light was observed.
Resumo:
We report all optical clock recovery based on a monolithic integrated four-section amplified feedback semiconductor laser (AFL), with the different sections integrated based on the quantum well intermixing (QWI) technique. The beat frequency of an AFL is continuously tunable in the range of 19.8-26.3 GHz with an extinction ratio above 8 dB, and the 3-dB linewidth is close to 3 MHz. All-optical clock recovery for 20 Gb/s was demonstrated experimentally using the AFL, with a time jitter of 123.9 fs. Degraded signal clock recovery was also successfully demonstrated using both the dispersion and polarization mode dispersion (PMD) degraded signals separately.
Resumo:
We propose a simple approach to generate a high quality 10 GHz 1.9 ps optical pulse train using a semiconductor optical amplifier and silica-based highly nonlinear fiber. An optical pulse generator based on our proposed scheme is easy to set up with commercially available optical components. A 10 GHz, 1.9 ps optical pulse train is obtained with timing jitter as low as 60 fs over the frequency range 10 Hz-1 MHz. With a wavelength tunable CW laser, a wide wavelength tunable span can be achieved over the entire C band. The proposed optical pulse generator also can operate at different repetition rates from 3 to 10 GHz.