237 resultados para Surface morphology
Resumo:
Novel silver-gold bimetallic nanostructures were prepared by seeding with silver nanoplates in the absence of any surfactants. During the synthesis process, it was found that the frameworks of silver nanoplates were normally kept though the basal plane of silver nanoplates became rugged. The real morphology of these nanostructures depended on the molar ratio of gold ions to the seed particles. When the molar ratio of gold ions to silver atoms increased from 0.5 to 4, porous or branched silver-gold bimetallic nanostructures could be made. The growth mechanism was qualitatively discussed based on template-engaged replacement reactions and seed-mediated deposition reactions. Due to the unusual structures, they exhibited interesting optical properties. Moreover, they were shown to be an active substrate for surface-enhanced Raman scattering measurements.
Resumo:
Three-dimensional Au nanorod and An nanoparticle nanostructured materials were prepared by layer-by-layer self-assembly. The plasmonic properties of the An nanorod and An nanoparticle self-assembled nanostructured materials (abbreviated as AuNR and AuNP SANMs) are tunable by the controlled self-assenibly process. The effect of thermal annealing at 180 and 500 degrees C to the morphologies, plasmonic properties and surface-enhanced Raman scattering (SERS) responses of these SANMs were investigated. According to the experimental results, these properties correlate with the structure of the SANMs.
Self-assembly morphology effects on the crystallization of semicrystalline block copolymer thin film
Resumo:
Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.
Resumo:
Self-assembly thin films of symmetric triblock copolymer after annealing and quenching were examined by an effective Monte Carlo simulation method. The defects in the ordered lamellae of the thin films after quenching, which were dependent on the initialization of copolymer melts, are removed in the thin films after annealing. The mean-square gyration radius and end-to-end distance of copolymer chains in the thin films after annealing are smaller than those in the thin films after quenching because of the complete relaxation of polymer during annealing. We also find that the density of A block in the region near to the surface is higher than that in the interior of the thin films. As a result, it is different from the thin films of symmetric A(n)B(n) diblock copolymer, in which surface ordering forms before the interior, that ordering phenomena occurs first in the interior region in the thin films of symmetric A(n)B(m)A(n). triblocl copolymer.
Resumo:
Polyaniline (PANI) was cathodically synthesized at an evaporated gold electrode using an in situ electrogenerated intermediate as oxidant during reduction of the dissolved oxygen. The obtained PANI layer showed an electrochemical response similar to that synthesized by the conventionally anodic polymerization, and the average rate for the growth of PANI layer at polycrystalline gold electrode was 1.59 nm h(-1), while that at the Au (111) electrode was 4.93 nm h(-1). Based on these results, the thickness of the resulted layer can be easily controlled at molecular level for potential nanodevice applications. The obtained PANI layer showed morphology from an island-like nanostructure to an ultrathin film, depending on the crystal orientation of the electrode used.
Resumo:
We have followed the time development of the microdomain structure in symmetric diblock copolymer poly(styrene-b-methyl methacrylate), P(S-b-MMA), ultrathin films via PMMA-selective solvent vapor treatment by atomic force microscopy (AFM). After preparation on a substrate preferentially attracting the PMMA block, PS forms a continuous layer at a film's free surface. With subsequent solvent vapor treatment, the film gradually shows a well-ordered hexagonally packed nanocylinders structure. It is shown that only when the film thickness is less than the 1/2L(0) (lamellar repeat spacing), and exposed to PMMA block selective solvent for an appropriate time, can the well-ordered hexagonally packed nanocylinders form. On an extended solvent vapor treatment, a mixed morphology containing nanocylinders and stripes appears, followed by the striped morphologies. When the annealing time is long enough, the film comes back to the flat surface again, however, with PMMA instead of PS dominating the free surface.
Resumo:
The effects of the molecular weight of polystyrene (PS) component on the phase separation of PS/poly(4-vinylpyridine) (PS/P4VP) blend films on homogeneous alkanethiol self-assembled monolayer (SAM) and heterogeneous SAM/Au substrates have been investigated by means of atomic force microscopy (AFM). For the PS (22.4k)/P4VP (60k) system, owing to the molecular weight of PS component is relatively small, the well-aligned PS and P4VP stripes with good thermal stability are directed by the patterned SAM/Au surfaces. With the increase of the molecular weight of PS component (for the PS (582k)/P4VP (60k) system), the diffusion of P4VP is hindered by the high viscosity of PS during the fast spin-coating process. The phase separation behavior of PS/P4VP on the SAM/Au patterned substrates is similar to that on the homoueneous SAM and cannot be easily directed by the patterned SAM surfaces even though the characteristic length of the lateral domain morphology is commensurate with the stripe width.
Resumo:
We report a simple procedure to assemble gold nanoparticles into hollow tubular morphology with micrometer scale, wherein the citrate molecule is used not only as a reducing and capping agent, but also as an assembling template. The nanostructure and growth mechanism of microtubes are explored via SEM, TEM, FTIR spectra, and UV-vis spectra studies. The incorporation of larger gold nanoparticles by electroless plating results in an increase in the diameter of microtubes from 900 nm to about 1.2 mu m. The application of the microtubes before and after electroless plating in surface-enhanced Raman scattering (SERS) is investigated by using 4-aminothiophenol (4-ATP) as probe molecules. The results indicate that the microtubes both before and after electroless plating can be used as SERS substrates. The microtubes after electroless plating exhibit excellent enhancement ability.
Resumo:
Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)(2), La(NO3)(3), etc. The possible growth mechanism of molybdenum trioxide prism-like particles is discussed on the basis of the presence of HI and the modification of metal cations. The as-prepared nanomaterials are characterized by means of powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and ultraviolet and visible spectroscopy (UV-vis). TEM and HRTEM micrographs show that the molybdenum trioxide nanobelts and prism-like particles have a relatively high degree of crystallinity and uniformity. BET specific surface areas of the as-prepared molybdenum trioxide nanocrystals are 67-79 m(2)g(-1). XPS analysis indicates that the hexavalent molybdenum is predominant in the nanocrystals. UV-vis spectra reveal that the direct band gap energy of the annealed molybdenum trioxide prism-like particles shows a pronounced blue shift compared to that of bulk MoO3 powder.
Resumo:
Poly(L-lactide) (PLLA) surface was modified via aminolysis by poly(allylamine hydrochloride) (PAH) at high pH and subsequent electrostatic self-assembly of poly(sodium styrenesulfonate) (PSS) and PAH, and the process was monitored by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. These modified PLLAs were then used as charged substrates for further incorporation of gelatin to improve their cytocompatibility. The amphoteric nature of the gelatin was exploited and the gelatin was adsorbed to the negatively charged PLLA/PSS and positively charged PLLA/PAH at pH = 3.4 and 7.4, respectively. XPS and water contact angle data indicated that the gelatin adsorption at pH = 3.4 resulted in much higher surface coverage by gelatin than at pH = 7.4. All the modified PLLA surfaces became more hydrophilic than the virgin PLLA. Chondrocyte culture was used to test the cell attachment, cell morphology and cell viability on the modified PLLA substrates.
Resumo:
The self-assembly of poly(di-n-butylsilane) (PDBS) and poly(di-n-hexylsilane) (PDHS) on the surfaces of amorphous carbon and highly oriented pyrolytic graphite (HOPG) have been investigated, respectively. The morphology and structures of these self-assembled thin films were studied by using atomic force microscopy, transmission electronic microscopy, and wide-angle X-ray diffraction. In the case of weak van der Waals interactions between absorbed molecules and substrate, i.e., on amorphous carbon, the self-assembly process was driven by absorbate-absorbate intermolecular interactions. For PDBS with weak absorbate-absorbate intermolecular interactions, the thin film showed organization lacking any measurable preferred orientation on the surface of amorphous carbon. While for PDHS with rigid backbone and strong intermolecular interactions, flat-on lamellae with silicon backbones perpendicular to the surface of amorphous carbon were formed. However, in the case of strong van der Waals interactions between absorbed molecules and substrate, i.e., on HOPG, the self-assembly process was tailored by the balance of absorbate-absorbate intermolecular interactions and molecule-substrate interactions. Both PDHS and PDBS thin films grew into edge-on lamellae on the surface of HOPG, which aligned according to a Mold symmetry.
Resumo:
Starting from nitrate aqueous solutions with citric acid and polyethylene glycol (PEG) as additives, Y3Al5O12:Eu (YAG:Eu) phosphors were prepared by a two-step spray pyrolysis (SP) method. The obtained YAG:Eu phosphor particles have spherical shape, submicron size and smooth surface. The effects of process conditions of the spray pyrolysis on the crystallinity, morphology and luminescence properties of phosphor particles were investigated. The emission intensity of the phosphors increased with increasing of sintering temperature and solution concentration due to the increase of the crystallinity and particles size, respectively. Adequate amount of PEG was necessary for obtaining spherical particles, and the optimum emission intensity could be obtained when the concentration of PEG was 0.10 g/ml in the precursor solution. Compared with the YAG:Eu phosphor prepared by citrate-gel (CG) method with non-spherical morphology, spherical YAG:Eu phosphor particles showed a higher emission intensity.
Resumo:
The thin films of poly(methyl methacrylate) (PMMA), poly(styrene-co-acrylonitrile) (SAN) and their blends were prepared by means of spin-coating their corresponding solutions onto silicon wafers, followed by being annealed at different temperatures. The surface phase separations of PMMA/SAN blends were characterized by virtue of atomic force microscopy (AFM). By comparing the tapping mode AFM (TM-AFM) phase images of the pure components and their blends, surface phase separation mechanisms of the blends could be identified as the nucleation and growth mechanism or the spinodal decomposition mechanism. Therefore, the phase diagram of the PMMA/SAN system could be obtained by means of TM-AFM. Contact mode AFM was also used to study the surface morphologies of all the samples and the phase separations of the blends occurred by the spinodal decomposition mechanism could be ascertained. Moreover, X-ray photoelectron spectroscopy was used to characterize the chemical compositions on the surfaces of the samples and the miscibility principle of the PMMA/SAN system was discussed.
Resumo:
Atomic force microscopy (AFM) and lateral force microscopy (LFM) were used simultaneously to analyze a model membrane bilayer structure consisting of a phospholipid outer monolayer deposited onto organosilane-derivatized mica surfaces, which were constructed by using painting and self-assembly methods. The phospholipid used as outer monolayer was dimyristoylphosphatidylcholine (DMPC). The hydrocarbon-covered substrate that formed the inner half bilayer was composed of a self-assembly monolayer (SAM) of octadecyltrichloroorganosilane (OTS) on mica. SAMs of DMPC were formed by exposing hydrophobic mica to a solution of DMPC in decane/isobutanol and subsequently immersing into pure water. AFM images of samples immersed in solution for varying exposure times showed that before forming a complete monolayer the molecules aggregated into dense islands (2.2-2.6 nm high) on the surface. The islands had a compact and rounded morphology. LFM, coupled with topographic data obtained with the atomic force mode, had made possible the distinction between DMPC and OTS. The rate constant of DMPC growth was calculated. This is the first systematic study of the SAM formation of DMPC by AFM and LFM imaging. It reveals more direct information about the film morphology than previous studies with conventional surface analytical techniques such as infrared spectroscopy, X-ray, or fluorescence microscopy.
Resumo:
Polyaniline (PANI), a member of the intrinsically conducting polymer (ICPs) family, was blended with polyamide-11 (polyco-aminoundecanoyle) in concentrated sulfuric acid. The above solution was used to spin conductive PANI/polyamide-11 fibers by wet-spinning technology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to study the two-phase morphology of the conductive PANI/polyamide-11 fibers. The micrographs of the cross-section, the axial section and the surface of the monofilament demonstrated that the two blend components were incompatible. The morphology of PANI in the fibers was of fibrillar form, which was valuable for producing conducting channels. The electrical conductivity of the fibers was from 10(-6) to 10(-1) S/cm with the different PANI fraction and the percolation threshold was about 5 wt.%. By comparing the two blend systems of PANI/Polyamide-11 fibers and carbon black filled poly(ethylene terephthalate) (PET) fibers, it was shown that the morphology of the conductive component had an influence on electrical conductivity, The former had higher conductivity and lower percolation threshold than the latter. (C) 2001 Elsevier Science B.V. All rights reserved.