278 resultados para Solani Ag-8
Resumo:
8-hydroxy-2'-deoxyguanosine (8OHdG) has been widely used as a biomarker of oxidative DNA damage in both animal models and human studies. To evaluate the effect of cigarette smoking on oxidative stress, we studied the levels of urinary 8OHdG from smokers and non-smokers and investigated the association with cigarette smoking. The urinary 8OHdG concentrations were determinated by capillary electrophoresis with end-column amprometric detection (CE-AD) after a single-step solid phase extraction (SPE), and then quantitatively expressed as a function of creatinine excretion. To increase the concentration sensitivity, a dynamic pH junction was used and the focusing effect was obvious when using 30 mM phosphate (pH 6.50) as sample matrix. The limit of detection is 4.3 nM (signal-to-noise ratio S/N = 3). The relative standard deviation (R.S.D.) was 1.1% for peak current, and 2.3% for migration time. Based on the selected CE-AD method, it was found that the mean value of urinary 8OHdG levels in the smokers significantly higher than that in non-smokers (31.4 +/- 18.9 nM versus 14.4 +/- 7.6 nM, P = 0.0004; 23.5 +/- 21.3 mug g(-1) creatinine versus 12.6 +/- 13.2 mug g(-1) creatinine, P = 0.028). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Increased oxidative stress induced by hyperglycemia may contribute to the pathogenesis of diabetic complications. Urinary 8-hydroxydeoxyguanosine (8-OHdG) has been reported to serve as a sensitive biomarker of oxidative DNA damage and also of oxidative stress. This article studied oxidative DNA damage in patients with diabetic nephropathy and in healthy control subjects by urinary 8-OHdG evaluations. Contents of 8-OHdG in urine were analyzed by capillary electrophoresis with end-column amperometric detection (CE-AD) after a single-step solid-phase extraction (SPE). Levels of urinary 8-OHdG in diabetic nephropathy patients with macroalbuminuria was significant higher than in control subjects (5.72 +/- 6.89 mumol/mol creatinine versus 2.33 +/- 2.83 mumol/mol creatinine, P = 0.018). A significant difference of 24 h urinary 8-OHdG excretions exists between the patients with macroalbuminuria and the patients with nonnoalbuminuria (19.2 +/- 16.8 mug/24 h versus 8.1 +/- 1.7 mug/24 h, P = 0.015). There was a positive correlation between urinary excretion of 8-OHdG and glycosylated hemoglobin (HbA(1)c) (r = 0.287, P = 0.022). A weak correlation exists between the levels of 8-OHdG and triglyceride (r = 0.230, P = 0.074). However, the urinary 8-OHdG contents are not correlated with blood pressure and total cholesterol. The increased excretion of urinary 8-OHdG is seen as indicating an increased systemic level of oxidative DNA damage in diabetic nephropathy patients. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have analyzed the propagation rate of the chemical waves observed during the course of CO oxidation on a Ag/Pt(I 10) composite surface that were reported in our previous papers [Surf Interface Anal. 2001, 32, 179; J. Phys. Chem. B 2002, 106, 5645]. In all cases, the propagation rate v can be adequately fitted as v = v(0) + D-0/d, in which v(0) and D-0 are constants, and d is the distance between the reaction front of the chemical wave and the boundary from which the chemical wave originates. We propose that the surface species responsible for the formation of the chemical wave comes from two paths: the adsorption of molecules in the gas phase on the surface and the migration from the adjacent surface with different catalytic activity. v(0) corresponds to the contribution from the surface species due to the adsorption, and D-0/d to that of the surface species that migrates from the adjacent surface. The rate equation clearly suggests that the observed chemical wave results from the coupling between adjacent surfaces with different catalytic activities during the course of heterogeneous catalysis. These results, together with our previous reports, provide a good fundamental understanding of spillover, an important phenomenon in heterogeneous catalysis.
Resumo:
Ag-CuCl catalysts were found to be active and selective for the epoxidation of propylene using air as the oxidant. Ag catalyst gives a propylene conversion of 31.6%, with a propylene oxide (PO) selectivity of 0.42% at a reaction temperature of 350 degreesC after 220 min of reaction. Addition of CuCl significantly improves the selectivity to PO, and suppresses the conversion of propylene. The Ag-CuCl (1/0.6) catalyst gives propylene conversion of about 3% and a PO selectivity of about 30% at a reaction temperature of 350 degreesC after 500 min of reaction. The activity of the Ag-CuCl catalyst increases with the reaction time and the selectivity to PO is very stable for this catalyst. It is found that AgCl and CuO phases formed during the catalyst preparation are beneficial to the epoxidation of propylene.
Resumo:
A metal ions (Ag, Bi, V, Mo) modified sol-gel method was used to prepare a mesoporous Ag0.01Bi0.85V0.54Mo0.45O4 catalytic membrane which was used in the selective oxidation of propane to acrolein. By optimizing the preparation parameters, a thin and perfect catalytically active membrane was successfully prepared. SEM results showed that the membrane thickness is similar to5 mum. XRD results revealed that Ag0.01Bi0.85V0.54Mo0.45O4 with a Scheelite structure, which is catalytically active for the selective oxidation of propane to acrolein, was formed in the catalytic membrane only when AgBiVMoO concentrations were higher than 40%. Catalytic reaction results demonstrated that the selective oxidation of propane could be controlled to a certain degree, such as to acrolein, in the catalytic membrane reactor (CMR) compared to the fixed bed reactor (FBR). For example, a selectivity of 54.85% for acrolein in the liquid phase was obtained in the CMR, while only 8.31% was achieved in the FBR. (C) 2003 Elsevier B.V. All rights reserved.