260 resultados para Protective adherent iron rich tribolayers
Resumo:
A series of 2,6-bis(imino)pyridyl iron and cobalt complexes bearing p-substituent [2,6-(ArN=CMe)(2)C5H3N]-MCl2 (Ar=2,6-Me2C6H3, 2,4,6-Me3C6H2, 2,6-Me-2-4-BrC6H2, 2,6-Me-2-4-ClC6H2, 2,4-Me-2-6-BrC6H2, 2,4-Me-(2)-6-ClC6H2, while M=Fe, Co) have been synthesized and investigated as catalysts for ethylene polymerization in the presence of modified methylaluminoxane as a cocatalyst. The electron effect and positions of the substitueni of pyridinebisimine ligands were observed to affect considerably catalyst activity and polymer property.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.
Resumo:
A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.
Resumo:
Halfsandwich iron dicarbonyl complex [eta(5)-C5H3(t-Bu)(2)]Fe(CO)(2)Cl(1) reacts with 1, 2-dilithium diseleno carborane Li(2)Se(2)C(2)B(10)H10 (2) to give a binuclear iron carborane complex [eta(5)-C5H3(t-Bu)(2)](2)Fe-2(CO)(3) Se2C2B10H10(3). The X-ray diffraction analysis of complex 3 reveals that one of the iron atoms is chiral.
Resumo:
The crystal of complex [Li(THF)(4)][Fe(S2C2B10H10)(2)(THF)] 3 belongs to monoclinic, space group P2(1) with a = 11.964(2), b = 16.527(3), c = 12.554(3) Angstrom,beta = 108.70(3)degrees, V= 2351.3(8) Angstrom(3), Z = 2, M-r = 835.95, D-c = 1.181 g/cm(3), mu (MoKalpha) = 5.30 cm(-1), f(000) = '874, R = 0.0622 and Rw 0.1538 for 1641 observed reflections with I > 2sigma(I). The ionic complex,of 3 contains the square pyramidal anion of [Fe(S2C2B10H10)(2)(THF)](-) and the tetrahedral cation of [Li(THF)(4)](+). The iron is 5-coordinated and located in the square pyramidal configuration. The iron atom and the four sulfur atoms are almost coplanar. The Lithium atom is coordinated with four oxygen atoms of four THF molecules and located in a tetrahedral configuration.
Resumo:
The half-sandwich methylcyclopentadlenyl iron carbonyl complex reacted with 1,2-dilithium diselenolate carborane Li2Se2C2B10H10 (1) which was produced by the insertion of element Se into 1, 2-dilithium carborane to give a half-sandwich binuclear iron carborane complex Cp'Fe-2(2)(CO) 3Se2C2B10H10 (3). X-ray structural analysis of complex 3 reveals that one of the iron atoms is chiral.
Resumo:
A novel sandwich-type compound, Na-12 [Fe-4 (H2O)(2) (As2W15O56)(2)] . 38H(2)O (denoted as Fe(4)AS(4)W(30)) was synthesized. The compound was well characterized by means of IR, UV-Vis, W-138 NMR and elemental analyses. Redox electrochemistry of the compound has been studied in acid buffer solutions using cyclic voltammetry(CV). The compound containing multilayer films has been fabricated on the 4-aminobenzoic acid(4-ABA) modified glassy carbon electrode(GCE) surface by alternate deposition with a quaternized poly (4-vinylpyridine) partially completed with [Os(bpy)(2)Cl](2+/-) (denoted as QPVP-Os). CV, X-ray photoelectron spectroscopy (XPS) and UV-Vis spectroscopy were used to characterize the asprepared multilayer films. It is proved that the multilayer films are uniform and stable. The electrocatalytic activities of the multilayer films were investigated on the reduction of two substrates of important analytical interest, NO2- and H2O2.
Resumo:
A surface-renewable tris (1,10-phenanthroline-5, 6-dione) iron (II) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD-modified electrode presented pH dependent voltammetric behavior, and its peak currents were diffusion-controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0. 4). In the, presence of iodate, clear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 x 10(-6)-1 x 10(-2) mol/L, 7.448 muA.L/mmol, 1.2 x 10(-6) mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface-renewal by simple mechanical polishing.