217 resultados para Photonic band gap
Resumo:
A new series of film-forming, low-bandgap chromophores (1a,b and 2a,b) were rationally designed with aid of a computational study., and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron-donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27-0.71 eV, and accordingly absorb at 746-1003 nm and emit at 1035-1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol(-1)) and non-coplanar structure allow these near-infrared (NIR) chromophores to be readily spin-coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]-phenyl-C-61 butyric acid methyl ester leads to a red shift in the absorption on]), for la and 2a. An interesting NIR electrochromism was found for 2a, with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256-318 nm) is also unique for this multidonor-acceptor type of chromophore.
Resumo:
By varying the substituent position of aminomethyl on pyridine ring in acid solution, different dimensional lead bromide frameworks ranging from zero-dimension and one-dimension to two-dimension were obtained. 2-(Aminomethyl)pyridine (2-AMP) or 3-(aminomethyl)pyridine (3-AMP) and PbBr2 construct hybrid perovskites, of which (H(2)2-AMP)PbBr4 (1) exhibits two-dimensional perovskite sheets with special hydrogen bonds and (H(2)3-AMP)PbBr6 (2) shows an uncommon zero-dimensional inorganic framework with isolated octahedra. The characteristic exciton peaks in absorption spectra are located at 431 nm for compound 1 and at 428 nm for compound 2. (H(2)4-AMP)PbBr4 (3) with one-dimensional zigzag edge-sharing octahedral PbBr(4)(2-)chains can be obtained using 4-(aminomethyl)pyridine (4-AMP) as organic component under the same experimental conditions as those for 2-AMP and 3-AMP.
Resumo:
A series of eight new polyquinolines and polyanthrazolines with pyrrole isomeric units in main chain were synthesized and characterized. The new polymers showed high glass transition temperatures (T-g = 242-339 degreesC) and excellent thermal stability (T-5% = 398-536 degreesC in air, TGA). Compared to the series of polyanthrazolines, the series of polyquinolines exhibited higher thermal stability, better solubility in common organic solvents, and lower maximum absorption wavelengths (lambda(max)(a)). Polyanthrazolines with 2,5-pyrrole linkage showed an unusually high lambda(max)(a) (565 nm) and small band gap (2.02 eV). All polymers in solution had low photoluminescence quantum yields between 10(-2%) and 10(-5%) and excited-state lifetimes of 0.28-1.29 ns. The effects of molecular structure, especially pyrrole linkage structures, on the electronic structure, thermodynamics, and some of the optical properties of the polymers were explored. A model of hydrogen bonds in the main chain of the polymers was suggested to explain the difference in the properties of the isomer polymers. In addition, a polyquinoline (PBM) was chosen to examine the proton conductivity; the result indicated that the PBM/H3PO4 complex exhibited a high conductivity of 1.5 x 10(-3) S cm(-1) at 157 degreesC.
Resumo:
Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)(2), La(NO3)(3), etc. The possible growth mechanism of molybdenum trioxide prism-like particles is discussed on the basis of the presence of HI and the modification of metal cations. The as-prepared nanomaterials are characterized by means of powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and ultraviolet and visible spectroscopy (UV-vis). TEM and HRTEM micrographs show that the molybdenum trioxide nanobelts and prism-like particles have a relatively high degree of crystallinity and uniformity. BET specific surface areas of the as-prepared molybdenum trioxide nanocrystals are 67-79 m(2)g(-1). XPS analysis indicates that the hexavalent molybdenum is predominant in the nanocrystals. UV-vis spectra reveal that the direct band gap energy of the annealed molybdenum trioxide prism-like particles shows a pronounced blue shift compared to that of bulk MoO3 powder.
Resumo:
A series of copolymers (CNPFs) containing low-band-gap 1,8-naphthalimide moieties as color tuner was prepared by a Yamamoto coupling reaction of 2,7-dibromo-9,9-dioctylfluorene (DBF) and different amount of 4-(3,6-dibromocarbazol-9-yl)-N-(4'-tert-butyl-phenyl)-1,8-naphthalimide (Br-CN) (0.05-1 mol% feed ratio). The light emitting properties of the resulting copolymers showed a heavy dependence on the feed ratio. In photoluminescence (PL) studies, an efficient color tuning through the Forster energy transfer mechanism was revealed from blue to green as the increase of Br-CN content, while in electroluminescence (EL) studies, the color tuning was found to go through a charge trapping mechanism. It was found that by introduction of a very small amount of Br-CN (0.1-0.5 mol%) into polyfluorene, the emission color can be tuned from blue to pure green with Commission International de l'Echairage (CIE) coordinates being (0.21, 0.42) and (0.21, 0.48). A green emitting EL single-layer device based on CNPF containing 0.1 mol% of Br-CN showed good performances with a low turn-on voltage of 4.2 V, a brightness of 9104 cd/m(2), the maximum luminous efficiency of 2.74 cd/A and the maximum power efficiency of 1.51 lm/W.
Resumo:
Two PPV-based copolymers consisting siloxane linkage have been synthesized by melt condensation of bisphenol and dianilinodimethylsilane. The rigid PPV segments act as chromosphere and allow fine turning of band gap for blue-light emission, while the flexible siloxane units lead to the effective interruption of conjugation and the enhancement of solubility. The UV-vis absorption, photoluminescent and eletroluminescent properties have been studied.
Resumo:
By using the average band-gap model, the chemical bond properties of (La1-x, M-x)(2)CuO4(M=Ba, Sr) were calculated. The calculated covalencies for Cu-O and La-O bond in the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of Fe-57 doped in La2CuO4 and Sn-119 doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in Fe-57 and Sn-119 doped La2CuO4.