284 resultados para Methyl Ketone


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility and crystallization behaviour of the blends of poly(ether ether ketone) (PEEK) with two thermoplastic polyimides (PI), PEI-E and YS-30, prepared by solution blending were studied by the use of small-angle X-ray scattering (SAXS), differential scanning calorimetry (d.s.c.) and polarizing microscopy techniques. The results obtained show that PEEK/YS-30 is miscible, while PEEK/PEI-E is partially miscible only in the composition range with PEI-E content up to 20 wt%. The crystallization behaviour of PEEK in PEEK/PI blends depends on the crystallization condition of the blend sample as well as the chemical structure and the content of the PI added. Our SAXS results indicate that the segregation of PI molecular chains during crystallization of PEEK chains in the blends is interfibrillar for PEEK/PEI-E blends, but interlamellar for PEEK/YS-30 blends. The compatibility and the crystallization behaviour are discussed in terms of charge transfer interaction between PI and PI molecules and between PI and PEEK molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly(ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12 mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK and more are immiscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two T(g)s were observed for the 50/50 blend of phenoxy with the copolymer containing 17 mol % EEK, whereas a single composition-dependent T-g appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five different molecular weight phenolphthalein poly(aryl ether ketone) (PEK-C) fractions in CHCl3 were studied by static and dynamic laser light scattering(LLS). The dynamic LLS revealed that the PEK-C samples contain some large polymer clusters. These large clusters can be removed by filtering the solution with a 0.1-mu m filter. We found that the persistence length of PEK-C in CHCl3 at 25 degrees C is similar to 2 nm and the Flory characteristic ratio, C-infinity is similar to 25. Our results showed that [R(g)(2)](1/2)(z) = (3.50+/-0.20) x 10(-2)M(w)(0.54+/-0.01) and [D] = (2.37+/-0.05) x 10(-4)M(w)(-0.55+/-0.01), with [R(g)(2)](1/2)(z), M(w), and [D] being the z-average radius of gyration, the weight-average molecular weight, and the z-average translational diffusion coefficient, respectively. A combination of static and dynamic LLS results enabled us to determine D = (2.20+/-0.10) x 10(-4)M(-0.555+/-0.015), where D and M correspond to monodisperse species. Using this calibration between D and M,we have determined molecular weight distributions of five PEK-C fractions from their corresponding translational diffusion coefficient distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures of poly(ether ether ketone ketone)-poly(ether biphenyl ether ketone ketone) copolymers were studied by using small angle X-ray scattering and the one-dimensional electron density correlation function method. The results revealed that structures of the aggregated state of the copolymers depend closely on the biphenyl content (n(b)). When n(b) = 0.35, invariant Q, long period L, average thickness of crystal lamellae (d) over bar, electron density difference eta(c) - eta(a) and degree of crystallinity W-c,W-x assume minimum values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three kinds of high-performance polyimides 1 (poly(ketone-imide) PKI), 2 (poly(ether-imide) PEI) and 3 (poly(oxy-imide) POI) were studied using nuclear magnetic resonance (NMR). The NMR spectra of the polyimides were assigned according to the comprehensive consideration of the substitution effect of different substituting groups, viz. distortionless enhancement by polarization transfer (DEPT), no nuclear Overhauser effect (NNE), analysis of relaxation time, and two-dimensional correlated spectroscopy (COSY) techniques. The structural units of these three polyimides were determined. Carbon-13 and proton relaxation times for PEI and PKI were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (JS model) and anisotropic group rotation such as phenyl group rotation and methyl group rotation. Correlation times for the main-chain motion are in the tens of picosecond range which indicates the high flexibility of polyimide chains. Correlation times for phenyl group and methyl group rotations are more than 1 order of magnitude lower and approximately 1 order of magnitude higher than that of the main chain, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of glass fiber-reinforced phenolphthalein poly(ether ketone)/poly(phenylene sulfide) (PEK-C/PPS) composites have been studied. The morphologies of fracture surfaces were observed by scanning electron microscope. Blending a semicrystalline component, PPS, can improve markedly the mechanical properties of glass fiber-reinforced PEK-C composites. These results can be attributed to the improvement of fiber/matrix interfacial adhesion and higher fiber aspect ratio. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new comblike polymer host for polymer electrolyte was synthesized by reacting monomethyl ether of poly(ethylene glycol) with poly(vinyl methyl ether-alt-maleic anhydride) and endcapping the residual carboxylic acid with methanol. Butanone was selected as a solvent for the esterification in order to obtain a completely soluble product. The synthesis process was traced through by LR. Compared with the model compounds, the presumed structure of this comblike polymer has been proved to be valid by C-13 NMR The comb polymer is a white rubbery solid. It can be dissolved in butanone and THF, and manifests good film forming ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The static and impact fracture toughness of phenolphthalein polyether ketone (PEK-C) were studied at different temperatures. The static fracture toughness of PEK-C was evaluated via the linear elastic fracture mechanics (LEFM) and the J-integral analysis. Impact fracture toughness was also analyzed using the LEFM approach. Temperature and strain rate effects on the fracture toughness were also studied. The enhancement in static fracture toughness at 70 degrees C was thought to be caused by plastic crack tip blunting. The increase in impact fracture toughness with temperature was attributed two different mechanisms, namely, the relaxation process in a relatively low temperature and thermal blunting of the crack tip at higher temperature. The temperature-dependent fracture toughness data obtained in static tests could be horizontally shifted to match roughly the data for impact tests, indicating the existence of a time-temperature equivalence relationship. (C) 1995 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to stress relaxation curves of phenolphthalein poly(ether ketone) (PEK-C) at different temperatures and the principle of time-temperature equivalence, the master curves of PEK-C at arbitrary reference temperatures are obtained. A coupling model (Kohlrausch-Williams-Watts) is applied to explain quantitatively the different temperature dependence of stress relaxation behavior and the relationship between stress relaxation and yield phenomenon is established through the coupling model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Izod impact fracture behaviour of notched specimens of phenolphthalein poly(ether ketone) (PEK-C) has been studied over a temperature range from room temperature to 240 degrees C by using an instrumented impact tester. The temperature dependence of the maximum load, total impact energy, initiation energy, propagation energy, ductility index (DI) and the relationships between these parameters and the relaxation processes have been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Charpy impact fracture behavior of notched specimens of phenolphthalein poly(ether ketone) (PEK-C) has been studied over a range of temperature using a JJ-20 Model instrumented impact tester. For PEK-C, there exist two temperature regions which distinguish the fracture mechanism, and the brittle fracture was preferentially governed by slip or shear bands at relatively high temperatures, but by crazes at low temperatures. The temperature dependence of the ductility index (DI) shows similar peaks to the tan delta loss. (C) 1995 John Wiley and Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress relaxation and dynamic mechanical behavior of phenolphthalein poly(ether ketone) (PEK-C) have been investigated. Using Ferry's reduction method, the master curve was obtained. From the experimental results, we found that the WLF equation is not appropriate in the lower-temperature range (T < T-g). The relaxation spectrum was calculated according to the first approximation method proposed by Schwarzl and Staverman. In addition to the alpha-transition region, a second transition zone is revealed at low temperature. This transition is probably due to a restricted motion of its main chain. (C) 1995 John Wiley and Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of tensile and three-point bending studies was conducted at various temperatures and loading rates using phenolphthalein polyether ketone (PEK-C). Yield stress, Young's modulus, fracture toughness, and crack opening displacement data were obtained for various conditions. In general, both yield stress and Young's modulus increase with decreasing temperature. However, the relationships between fracture toughness, loading rate, and temperature are very complex. This behavior is due to the simultaneous intersection of viscoelasticity and localized plastic deformation. The increased yield stress is the main factor contributing to the reduction in fracture toughness and crack opening displacement. The relationship between fracture toughness and yield stress are discussed. (C) 1995 John Wiley and Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenolphthalein poly(ether ketone) (PEK-C) was tested using an instrumented impact tester to determine the temperature effect on the fracture toughness K-c and critical strain energy release rate G(c). Two different mechanisms, namely the relaxation processes and thermal blunting of the crack tip were used to explain the temperature effect on the fracture toughness. Examination of the fracture surfaces revealed the presence of crack growth bands. It is suggested that these bands are the consequence of variations in crack growth along crazes that are formed in the crack tip stress field. As the crack propagates, the stress is relaxed locally, decreasing the growth rate allowing a new bundle of crazes to nucleate along which the crack advances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fracture toughness values of phenolphthalein poly(ether ketone) (PEK-C) at 190 degrees C were determined by two different methods, i. e. the conventional crack growth method and the crack stress whitening zone method, which show consistent results. This indicates that the crack stress whitening zone method can be used to determine the crack initiation of some polymers for which the blunting line concept is unsuitable.