304 resultados para IONIC CONDUCTING MEMBRANES
Resumo:
The sample solution of KNO3 is ejected into the gas phase and the ionic dusters of K+(KNO3)(n) and NO3-(KNO3)(m) we formed and observed by electrospray ionization mass spectrometry (ESIMS). The full mass spectra of both the positive ion and the negative ion show that the differences between each peak nearby are all about 101(m/z), which correspond to the molecular weight of KNO3. The general formula of the ionic clusters can be assigned as K+ (KNO3)(n) and NO3--(KNO3)(m).
Resumo:
Composite polymeric electrolytes of PEO-LiClO4-Al2O3 and PEO-LiClO4-EC were prepared and the ionic conductivity by a.c. impedance was calculated using four different methods, and three kinds of representations of a.c. impedance spectra were adopted. The first is based on the Nyquist impedance plot of the imaginary part (Z") versus the real part (Z') of the complex impedance. The second and the third correspond to the plots of imaginary impedance Z" as a function of frequency (f), and the absolute value (\Z\) and phase angle (theta) as a function of f, respectively. It was found that the values of the ionic conductivity calculated using the three representations of a.c. impedance spectra are basically identical.
Resumo:
Hybrid bilayer membrane consisting of self-assembled alkanethiol and lipid monolayer on gold electrode was fabricated by the paint - freeze method. The interaction of a kind of polyanion, K7Fe3+P2W17O62H2 with such bilayer membrane was investigated by cyclic voltammetry and ac impedance. The hybrid bilayer membrane on the gold electrode showed remarkable insulating property, however, the property was lessened to some extent after interaction with the polyanion. It was found the process was in-eversible. It is presumed that the interaction between the polyanion and lipid is an interaction of K7Fe3+P2W17O62H2 with the polar head group of PC, which lessens the interaction among PC polar head groups. The resulting molecular arrangement becomes looser, even some pores are produced.
Resumo:
A novel conducting polymer poly(phenylene sulfide-tetraaniline) (PPSTEA), with tetraaniline (TA) and phenylene sulfide (PS) segments in its repeat unit, has been synthesized through an acid-induced polycondensation reaction of 4-methylsulfinylphenyl-capped tetraaniline. The new polymer, which represents the first soluble conducting polyaniline analogue with well-defined structure, has high molecular weight, good solubility in common solvents, and good film-forming properties. Its electrical property is analogous to polyaniline. The conductivity of preliminarily, protonic-doping PPSTEA is up to 10 degrees S/cm. This synthetic strategy appears to be general for developing novel well-defined polyaniline analogue containing much longer fixed conjugation length.
Resumo:
As a kind of supported bilayer lipid membranes, hybrid bilayer membrane (HBM) was applied to the interaction between Ca2+ and lipid for the first time. By using Fe(CN)(6)(3-) as a probe, we found that Ca2+ could induce the ion channel of HBM to be in open state. STM images study proved this phenomenon.
Resumo:
New typical ionic clusters with complex anions could be formed directly from the KNO3 aqueous solution by means of the electrospray ionization mass spectrometry(ESIMS). The difference between the neighboring peaks(m/z), which corresponded to the molecule weight of KNO3 being 101 in the full mass spectrometry of the positive-ion and the negative-ion. The general formula of the ionic clusters belonged to K+(KNO3)(n) and NO3- (KNO3)(m).
Resumo:
A kind of solid substrate, glassy carbon (GC) electrode. was selected to support self-assembled lipid layer membranes. On the surface of GC electrode. we made layers of dimyristoylphosphatidylcholine (DMPG, a kind of lipid). From electrochemical impedance experiments. we demonstrated that the lipid layers on the GC electrode were bilayer lipid membranes. We immobilized horseradish peroxidase (HRP) into the supported bilayer lipid membranes (s-BLM) to develop a kind of mediator-free biosensor for H2O2. The biosensor exhibited fine electrochemical response, stability and reproducibility due to the presence of the s-BLM. As a model of biological membrane, s-BLM could supply a biological environment for enzyme and maintain its activity. So s-BLM is an ideal choice to immobilize enzyme for constructing the mediator-free biosensor based on GC electrode. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A convenient way to make water-soluble or water-dispersible conducting polyaniline was given by employing protonic acid dopants containing hydrophilic ethyleneoxide oligomer as counter-anion. The conducting polyaniline possessed electrical conductivity in the range of 10(-3) to 10(-2) S/cm, depending on the dopant, and it displayed excellent electrochemical redox reversibility in non-aqueous system.
Resumo:
Using a graft modification method, a comblike polymer host (CBPE550) was synthesized by reacting monomethyl ether of poly(ethylene glycol) (PEGMA) with ethylene-maleic anhydride copolymer (EMAC) and endcapping the residual carboxylic acid with methanol. The product was characterized by IR and elementary analysis. Result showed that the product was amorphous and semi-ester product is accord with reaction equation. There were two peaks in the plot of the ionic conductivity against Li salt concentration. The plot of log a against 1/(T - T-0) shows a dual VTF behavior when using the glass transition temperature of PEO of side chain as T beta. The comblike polymer is a white rubbery solid. It can be well-dissolved in acetone. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Gramicidin within the lipid bilayer matrix is a well-known channel-forming polypeptide, but the mechanism of the ions across the membrane induced by gramicidin is not well understood. We found that at very low concentration of gramicidin in a bilayer lipid membrane, the channel behavior was controlled by the voltage applied across the membrane. When the voltage is higher than 75 mV, the channel is closing, while lower than 75 mV, the channel is opening. But when the concentration of the gramicidin in the BLMs is high, the channel behavior is changed into voltage-independent. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A convenient way to prepare water-soluble or water-dispersible conducting polyaniline was developed by employing protonic acid dopants containing hydrophilic ethyleneoxide oligomer as counter-ion. The conducting polyaniline possesses electrical conductivity in the range of 10(-3) to 10(-2) S/cm depending on the chosen dopant, and it displays an excellent electrochemical redox reversibility in non-aqueous systems.
Resumo:
The effects of La3+ on the structure and function of human erythrocyte membranes were investigated by fluorescence polarization, spin-labeled electron spin resonance (ESR) and differential scanning calorimetry (DSC). The results showed that increasing concentrations of La3+ inhibited (Na++K+)-ATPase and Mg2+-ATPase activities. La3+ lowered the lipid fluidity of erythrocyte membranes and induced structural transitions in erythrocyte membranes.
Resumo:
Detection of DNA is a very important task for molecular biology and biomedical field. We have investigated electrochemical behavior of double-stranded DNA and single-stranded DNA adsorbed on conducting polymer modified electrode in presence of cobalt complex. The possibility of using such electrode as gene detector is discussed.
Resumo:
Electrochemical behavior of the transfer of H+ across polypyrrole membrane (PPM) was studied. The transfer process was quasi-reversible and mainly diffusion-controlled. PPM electropolymerized in water solution has better reversibility than that in CH3CN solution for the transfer of H+. The transfer process of H+ across the two kinds of PPM indicated that the PPM electrochemically polymerized was of asymmetry.
Resumo:
The diffusion coefficients(D-app) and the heterogeneous electron-transfer rate constants(k(s)) for ferrocene in MPEG/salt electrolytes were determined by using steady-state voltammetry. The temperature dependence of the two parameters obeys the Arrhenius equation. The effect of the ionic size of six supporting electrolytes on diffusion and electron transfer dynamics of ferrocene was discussed.