382 resultados para Highly enantiomerically enriched amines
Resumo:
By introducing an effective electron injection layer (EIL) material, i.e., lead monoxide (PbO), combined with the optical design in device structure, a high efficiency inverted top-emitting organic light-emitting diode (ITOLED) with saturated and quite stable colors for different viewing angles is demonstrated. The green ITOLED based on 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one exhibits a maximum current efficiency of 33.8 cd/A and a maximum power efficiency of 16.6 lm/W, accompanied by a nearly Lambertian distribution as well as hardly detectable color variation in the 140 forward viewing cone. A detailed analysis on the role mechanism of PbO in electron injection demonstrates that the insertion of the PbO EIL significantly reduces operational voltage, thus greatly improving the device efficiency.
Resumo:
By utilizing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline:Li/MoO3 as an effective charge generation layer (CGL), we extend our recently demonstrated single-emitting-layer white organic light-emitting diode (WOLED) to realize an extremely high-efficiency tandem WOLED. This stacked device achieves maximum forward viewing current efficiency of 110.9 cd/A and external quantum efficiency of 43.3% at 1 mu A/cm(2) and emits stable white light with Commission Internationale de L'Eclairage coordinates of (0.34, 0.41) at 16 V. It is noted that the combination of effective single units and CGL is key prerequisite for realizing high-performance tandem WOLEDs.
Resumo:
A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.
Resumo:
Two simple triphenylamine/oxadiazole derivatives were synthesized and fully characterized; their multifunctionality as highly efficient non-doped blue fluorescence, excellent red phosphorescent host and single-doped two-color based white OLEDs has been demonstrated.
Resumo:
Two bridged triphenylamine-triphenylsilane (BTPASi) hybrids have been designed as host materials for phosphorescent OLEDs; devices with the novel host materials achieve maximum external quantum efficiencies as high as 15.4% for blue and 19.7% for green electrophosphorescence.
Resumo:
4-Bromo-9,9'-spirobifluorene is facilely synthesized, and from this precursor, two ortho-linked oligo-9,9'-spirobifluorenes, 44BSF and 24TSF, are constructed. Devices with 24TSF as the full-hydrocarbon host material and Ir(ppy)(3) or (ppq)(2)Ir(acac) as the triplet emitter show maximum external quantum efficiencies of 12.6 and 10.5% for green and red electrophosphorescence, respectively.
Resumo:
A fully diarylmethylene-bridged triphenylamine derivative is efficiently synthesized. It has an almost planar triphenylamine (TPA) skeleton and exhibits excellent thermal and morphological stability. Devices with the novel TPA derivative as host material and Ir(ppy)(3) as triplet emitter show a maximum current efficiency of 83.5 cd/A and a maximum power efficiency of 71.4 Im/W for green electrophosphorescence.
Resumo:
novel compound (BCBP) based on the modification of a well-known host material 4,4'-(bis(9-carbazolyl))biphenyl (CBP) through arylmethylene bridge linkage was synthesized, and fully characterized. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied. A high glass transition temperature (T-g) of 173 degrees C is observed for BCBP due to the introduction of the bridged structure, remarkably contrasting with a low T-g of 62 degrees C for CBP. Furthermore, the bridged structure enhances the conjugation and raises the HOMO energy, thus facilitating hole-injection and leading to a low turn-on voltage in an electroluminescent device. With the device structure of ITO/MoO3/NPB/Ir complex: BCBP/BCP/Alq(3)/LiF/Al, maximum power efficiencies of 41.3 lm/W and 6.3 lm/W for green- and blue-emitting OLED were achieved, respectively.
Resumo:
A series of carbazole derivatives was synthesized and their electrical and photophysical properties were investigated. It is shown that the triplet energy levels of these hosts are higher than that of the most popular blue phosphorescent material iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C-2'] picolinate (FIrpic) and the most extensively used phosphorescent host material 4,4'-N,N'-dicarbazole-biphenyl (CBP). These new host materials also showed good thermal stability and high glass transition temperatures (T-g) ranging from 78 to 115 degrees C as the linkage group between the carbazoles was altered. Photophysical measurements indicate that the energy transfer between these new hosts and FIrpic is more efficient than that between CBP and FIrpic. Devices incorporating these novel carbazole derivatives as the host material doped with FIrpic were fabricated with the configurations of ITO/NPB (40 nm)/host:FIrpic (30 nm)/BCP (15 nm)/AlQ (30 nm)/LiF (1 nm)/Al (150 nm). High efficiencies (up to 13.4 cd/A) have been obtained when 1,4-bis (4-(9H-carbazol-9-yl)phenyl)cyclohexane (CBPCH) and bis(4-(9H-carbazol-9-yl)phenyl) ether (CBPE) were used as the host, respectively.
Resumo:
Deprotonation of (ArNHPPh2NAr2)-N-1 (H[NPN](n), n = 1 - 10) by Ln(CH2SiMe3)(3)(THF)(2) (Ln = Lu, Y, Sc, Er) generated a series of rare-earth metal bis(alkyl) complexes [NPN](n)Ln(CH2SiMe3)(2)(THF)(2) (1-10), which under activation with [Ph3C][B(C6F5)(4)] and AliBu(3) were tested for isoprene polymerization. The correlation between catalytic performances and molecular structures of the complexes has been investigated. Complexes 1-5 and 8, where Ar-1 is nonsubstituted or ortho-alkyl-substituted phenyl, adopt trigonal-bipyramidal geometry. The Ar-1 and Ar-2 rings are perpendicular in 1-4 and 8 but parallel in 5. When Ar-1 is pyridyl, the resultant lutetium and yttrium complexes 9a and 9b adopt tetragonal geometry with the ligand coordinating to the metal ions in a N,N,N-tridentate mode, whereas in the scandium analogue 9c, the ligand coordinates to the Sc3+ ion in a N,N-bidentate mode. These structural characteristics endow the complexes with versatile catalytic performances, With increase of the steric bulkiness of the ortho-substituents Ar-1 and Ar-2, the 3,4-selectivity increased stepwise from 81.6% for lutetium complex 1 to 96.8% for lutetium complex 6 and to 97.8% for lutetium complex 7a. However, further increase of the steric bulk of the ligand led to a slight drop of 3,4-selectivity for the attached complex 5 (95.1%).
Resumo:
Ordered N-methylimidazolium functionalized mesoporous silica (SBA-15) anion exchangers were directly synthesized by co-condensation of tetraethoxysilane with 1-methyl-3(triethoxysilylpropyl)imidazolium chloride. The prepared samples with rod-like morphology showed high surface areas (> 400 m(2) g(-1)), well-ordered pores (> 58 angstrom), and excellent thermal stability up to 387 degrees C. The adsorption behaviors of Cr(VI) from aqueous solution on the anion exchangers were studied using the batch method. The anion exchangers had high adsorption capacity ranging from 50.8 to 90.5 mg g(-1), over a wider pH range (1-8) than amino functionalized mesoporous silica. The adsorption rate was fast, and the maximum adsorption was obtained at pH 4.6. The adsorption data for the anion exchangers were consistent with the Langmuir isotherm equation. Most active sites of the anion exchangers were easily accessible. The mixed solution of 0.1 mol L-1 NH3 center dot H2O and 0.5 mol L-1 NH4Cl was effective desorption solution, and 95% of Cr(VI) could be desorbed.
Resumo:
A facile and efficient strategy for the syntheses of novel hyperbranched poly(ether amide)s (HPEA) from multihydroxyl primary amines and (meth)acryloyl chloride has been developed. The chemical structures of the HPEAs were confirmed by IR and NMR spectra. Analyses of SEC (size exclusion chromatography) and viscosity characterizations revealed the highly branched structures of the polymers obtained. The resultant hyperbranched polymers contain abundant hydroxyl groups. The thermoresponsive property was obtained from in situ surface modification of abundant OH end groups with N-isopropylacrylamide (NIPAAm). The study oil temperature-dependent characteristics has revealed that NIPAAm-g-HPEA exhibits an adjustable lower critical solution temperature (LCST) of about 34-42 degrees C depending on the grafting degree. More interestingly, the work provided an interesting phenomenon where the HPEA backbones exhibited strong blue photoluminescence.
Resumo:
A series of novel neutral nickel complexes 4a-e bearing modified beta-ketoiminato ligands [(2,6-(Pr2C6H3)-Pr-i)N=C(R-1)CHC(2 '-R2C6H4)O]Ni(Ph)(PPh3) (4a, R-1 R-2 = H; 4b, R-1 = H, R-2 = Ph; 4c, R-1 = H, R-2 = Naphth; 4d, R-1 = CH3, R-2 = Ph; 4e, R-1 = CF3, R-2 Ph) have been synthesized and characterized. Molecular structures of 4b and 4e were further confirmed by X-ray crystallographic analysis. Activated with B(C6F5)(3), all the complexes are active for the polymerization of ethylene to branched polyethylenes. Ligand structure, i.e., substituents R-1 and R-2, greatly influences not only catalytic activity but also the molecular weight and branch content of the polyethylene produced. The phenyl-substituted complex 4b exhibits the highest activity of lip to 145 kg PE/mol(Ni)center dot h center dot atm under optimized conditions, which is about 10 times more than unsubstituted complex 4a (14.0 kg PE/mol(Ni center dot)h center dot atm). Highly branched polyethylene with 103 branches per 1000 carbon atoms has been prepared using catalyst 4e.
Resumo:
The copolymerizations of ethylene with polar hydroxyl monomers such as 10-undecen-1-ol, 5-hexen-1-ol and 3-buten-1-ol were investigated by the vanadium(III) catalysts bearing bidentate [N,O] ligands (1, [PhN=C(CH3)CHC(Ph)O]VCl2(THF)(2): 2, [PhN=CHC6H4O]VCl2(THF)(2); 3, [PhN=CHC(Ph)CHO]VCl2(THF)(2)). The polar monomers were pretreated by alkylaluminum before the polymerization. High catalytic activities and efficient comonomer incorporations can be easily obtained by changing monomer masking reagents and polymerization conditions in the presence of diethylaluminium chloride as a cocatalyst. The longer the spacer group, the higher the incorporation of the monomer. Under the mild conditions, the incorporation level of 10-undecen-1-ol reached 13.9 mol% in the resultant copolymers was obtained. The reactivity ratios of copolymerization (r(1) = 41.4, r(2) = 0.02, r(1)r(2) = 0.83) were evaluated by Fineman-Ross method. According to C-13 NMR spectra, polar units were located both on the main chain and at the chain end.
Resumo:
Uniform octahedral LuVO4 microcrystals have been successfully prepared through a designed two-step hydrothermal method. One-dimensional lutetium precursor was first prepared through a simple hydrothermal route. Subsequently, a well-shaped octahedral LuVO4 sample was synthesized at the expense of the wirelike precursors during the hydrothermal process. The whole process in this method was carried out in aqueous conditions without the use of any organic solvents, surfactant, or catalyst. The conversion process from nanowire precursor to octahedral product has been investigated in detail. The LuVO4 : Ln(3+) (Ln Eu, Dy, Sm, and Er) phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet light excitation or low-voltage electron beam excitation. Furthermore, this general and facile method may be of much significance in the synthesis of many other lanthanide compounds with polyhedral morphology.